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Chapter 1
Gradients of lines and
curves
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Section 3: Calculus — Gradients of lines and curves

Graph of a
straight line

Gradient

Consider the graph  y=2x+1

y=2x+1

N D W A 0 N o © Y

9 -8 -7 6 -5 -4 -3 -2 - 1 2 3 4 5 6 7 8 9 X-—>

)

p362 fig1

We can see that as x increases by 1 unit, y always increases by 2 units. This is the
same at every point on the line.

) Increase in
The ratio —y
Increase in x

is called the gradient or slope of the line.

We can liken it to the gradient of a hill. The greater the gradient, the steeper the
hill.

In this case the gradient =2, which is the coefficient of x.
It is clear that the gradient of a straight line is the same anywhere on the line and is
always given by the coefficient of x, since the coefficient of x determines how
many units y increases for each unit increase in x.
To measure the gradient of a straight line we can take this ratio anywhere along the
line, for example if we measure the changes in y and x along the whole length as

shown in the diagram, it can be seen that:

total increase in y = 18 units
total increase inx = 9 units

[ gradient = 18/9 = 2.
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Section 3: Calculus — Gradients of lines and curves

In practice, if we wish to measure the gradient of a line, measuring over the
longest possible section gives the most accurate result.

The equation y = 2x + 1 is called a linear equation since its graph is a straight line.

Intercept If we let x =0, we get y = 1. Therefore the line must intercept the y axis (which is
the line x = 0) at the point where y = 1.

/

Ay

C = intercept

_ Ay
Ay M =Ax

AN/&QO}\I@OY—)

1 2 3 4 5 6 7 8 9X->

Graph of
y = mx+c

p362 fig2

Instead of writing “an increase in )"’ we write, for short, Ay or dy.
This is read as “delta Y. Similarly an increase in x is written as Ax.

: . . .. A
Hence, the gradient of a straight line at any point is el

General form | The equation of a straight line is of the form:
of the equation
of a straight —
v 8 y=mx +c

ine

m, the coefficient of x, is the gradient, since y increases proportionately by this
amount with respect to x.

If we let x =0, we get y = c. Therefore ¢ must be the intercept on the y axis.

CW/P-362.doc 1-2



Section 3: Calculus — Gradients of lines and curves

Negative slope |If %/, is negative this means that y is changing in a negative direction as x
increases in the positive direction.

Consider the graph y =—3x + 2. As x increases by 1, y changes by —3.
Therefore /. is negative and equal to —3.

The intercept on the y axis is +2 as shown on the diagram below.

> o o N o oY

— N

\

9 8 -7 6 5 4 3 -2 10 2 3 4 5 6 7 8 9 X
-1
-2
-3
-4
-5
-6
7
-8
9 Graph of
y=-3x+2
p362 fig3
SAQ3-1-1 Write down (a) the gradient (b) the intercept on the y axis of the
following straight lines.
Equation Gradient Intercept
y=55x+1
y=-2x+4
Y=-15x-2
y=x-3
y=4
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Section 3: Calculus — Gradients of lines and curves

Plotting
straight lines | There are 2 methods of drawing straight lines from an equation.

Method 1. Given a line y = mc + ¢, plot the intercept ¢ on the y axis. from this
point move along a distance x squares and then up or down a distance of mx
squares.

Method 2. Substitute values of x into the equation and calculate corresponding
values of y. A straight line is determined uniquely by 2 points, but to draw it
accurately it is better to plot 3 or more points to align your ruler correctly.

Example
Plot the graph y = 0-5x — 2 for values of x between 8 and 8.

Substituting x =8, x =0, and x = 8, we get the corresponding value of y = -6,
Y= _2" Y= 2.

Plotting the 3 points (-8, —6), (0, —2), (8, 2) and joining them, we obtain the line.

- N W s O N o © Y

9 8 -7 6 5 4 3 2 -

y=05x-2
p362 fig4

Measuring the slope, %/, we note that it is 0-5 as expected.
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Section 3: Calculus — Gradients of lines and curves

SAQ3-1-2
Plot the following lines on the same axes below.

Measure the slope of each line and check that it is equal to the coefficient of x.
a. y=2x-1

b. y=-2x+2

-~ N W b OO N 0 oY

9 8 -7 6 -5 432101 2 3 45 6 7 8 9X->
-1

2
3
-4
5
-6
7
-8
e

p362 figh
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Section 3: Calculus — Gradients of lines and curves

Equation of a
line trough two
points

Given the coordinates of 2 points, we can find the equation of the line through
them.

Coordinates are conventionally written with the x coordinate first, e.g. the point
(3, —2) means the point whose coordinates are x =3, y =-2.

Consider the line, y = mx + ¢ through the 2 points (x;, y1) and (x1, )»)

_ &:yz_yl
Ax  x, —x

Ay
1 2 3 4 5 6 7 8 9 X->

w
N
N

1
X
1 -
<
!
1
L \Nw »p 0 0 N o oY

Y T T
©O© 0O N O OB W N 20O

p362 figb

Having found the gradient m, the intercept ¢ may be found by substituting either
coordinate pair into the equation.

Find the equation of the line through the points (-2, 1) and (6, 13).

Lty . B-1_ 12 o
X, =X, 6--2 8
U y=I5x+c

Substitutingx =-2,y=1 gives 1=15x-2+¢
Uc=4
Hence the equation of the line is y = 1-5x + 4

CW/P-362.doc
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Section 3: Calculus — Gradients of lines and curves

SAQ3-1-3 Find the equations of the straight lines through the following sets of points:
a. (1,6)and (3, 20)

b.  (-5,-2) and (4, 25)

c. (2,15 and(3,5)

d. (1,20)and (5, 4)

e. (-2,-4)and (6, 12)

CW/P-362.doc 1-7



Section 3: Calculus — Gradients of lines and curves

Equations of
straight lines in
other forms

Gradient of a
curve

It is clear that the equation of a line could also be written in terms of x.
For example, the equation y — 0-5x + 3 could equally well be written as
x=2y—-6

There are occasions where it may be more convenient to express the equation in
this way.

Another form of the equation is the implicit formie x—-2y+6=0

5
A straight line which is T4
parallel to the y axis cannot 3
be written in the form 2 X=2
y =mx+ ¢, since the 1
gradient is infinite, but can
. . 6 5 4 3 2 10 1 % 3 4 5 6
only be written in terms of R X
x. For example, the line 2
x=2. 3
-4
The y axis is the line x = 0. 5

p362 fig7

On some graphs, instead of labelling the axes x - and y1, the y axis is labelled as
the line x = 0 and the x axis as the line y = 0.

The gradient of a curve is not the same at every point, so how do we define it?

The gradient of a curve at some point is defined as the gradient of the tangent to
the curve at that point. A tangent is a line which touches a curve at one point only.

Y-

The gradient By
varies with x and
therefore must be a
function of x.

In practice, it is very Ay
difficult to draw a
tangent to a curve.

AX

Ay

X—

p362 fig8
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Section 3: Calculus — Gradients of lines and curves

SAQ3-1-4 On the graph of y = x%, ( see next page) draw the tangents to the curve at
a x=1
b x=05
c x=2

y=X
-3 -2 10 1 2 3 X—>
-1
p362 fig9

Measure as accurately as possible the gradient of the tangents at these points.
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Section 3: Calculus — Gradients of lines and curves

SAQ3-1-5

On the graph of sin x below, draw tangents and measure as accurately as possible
the gradient at the points

a x=0
b X=Tl
C X =27

Note that the same scale has been used on both x and y axes.

If different scales are used on the axes, which is often the case, the gradient
measurement must be scaled accordingly.

sin(x)

Graph of y=sin x. Note: x is in radians.

What is the gradient at the points where x = TV2 and x = 3102 ?
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Elementary differentiation

CW/P-362.doc



Section 3: Calculus — Elementary differentiation

Differentia—
tion

Function
notation

Rate of change

Differential calculus allows us to find the rate of change of one variable with
respect to another. We shall commonly use the letters y and x to denote variables
but other letters are often used, particularly in practical problems.

If y is a function of x this means that y varies with x according to some formula. y
is called the dependent variable and x is called the independent variable.

We write y = f(x) meaning “y is a function of x”. For example y = x*, y = sin x,
y=¢". These are all functions of the variable x. Alternatively, we may write f(x) =
x* instead of y=x7.

Similarly, in electrical problems we may write i = f(¢), where i is current and ¢ is
time. This implies that current is varying with time according to some
relationship. i is called the instantaneous value of current since it is the value of
current at some instant, ¢ seconds.

f(a), where a is some number, means the function evaluated at x = a.
For example: if f(x) =x%, then f(3) =9
if f(x) = sin x, then f(172) = 1

A graph is a pictorial representation of a function. The type of graph which we
have used in this section plots y against x on axes at right—angles. This is called a
Cartesian graph. Other types of graphs such as polar plots have specific
applications.

The rate of change of y as x varies, is represented pictorially by the gradient of the
graph. We have seen that the gradient of a straight line is a constant.
If y = mx + c then y varies at the constant rate, m.

If f(x) is not a linear function, i.e. its graph is not a straight line, then the rate of
change of y is not constant but varies with x. Therefore, the rate of change must
itself be a function of x. This function is called the derivative of f(x). The process
of finding the derivative is called differentiation.

In SAQ4-1-4 you were asked to measure the gradient of the curve y = x” at the
points where x = 1, 0-5, and 2. If you had measured accurately (which is very
difficult) you would have obtained the results 2, 1, and 4, respectively. This seems
to imply that the gradient of the curve y = x” is equal to 2x. That is in fact true, and
the gradient of the curve at every point is 2x.

Therefore, the derivative of x* is equal to 2x. We shall prove this on a subsequent
page.

CW/P-362.doc
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Section 3: Calculus — Elementary differentiation

Differenti—
ation from
first
principles

Limits

You have seen the difficulty of drawing tangents accurately and measuring their
gradient. There is a similar difficulty in finding the gradient mathematically, and
to do so we have to introduce the concept of a /imit.

Consider the graph of y = x* as shown in the diagram below (not to scale).

Suppose we wish to find the rage of change (gradient) at the point A;
(x=3,y=9). We know that the answer should be 2 x 3 = 6.

Graph of y=»

25

3 4
The straight line, AB

which cuts the curve,
(called a chord), has a
gradient : 15

20

A _
y/Ax - 10 7

If we move the point B nearer to point A, the gradient of the chord becomes nearer
to the gradient of the tangent. So, let us keep halving Ax and see what happens.

Ax Ay Ay | Ax
1 4> — 3 7
05 357-9 = 3235 65
0-25 3252-9 = 1-5625 625
0-125 |3:125%-9 = 0765625 6125
00625 [3-0625% —9= 0-37890625 6-062

Y/, seems to be getting closer to 6.
Now make Ax very small, say —0-0001

0-0001 |3-0001%—9= 0-00060001 6-0001

%/, is even closer to 6. As Ax approaches zero, Y/ne appears to be approaching 6.
The problem is; how do we find the exact value of Y/, at the point where x = 3?
If we let Ax equal zero the chord AB becomes the tangent at A, but Ay and Ax both
become zero and we cannot evaluate 0 + 0. As stated in section 1 Algebra,
division by zero is not defined in the arithmetic of real numbers (nor complex
numbers). As Ay and Ax become infinitesimally small, the ratio B/ appears to
be approaching a /imit, in this case 6, although if we let Ay = 0, Ax = 0, the

CW/P-362.doc
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Section 3: Calculus — Elementary differentiation

ratio cannot be evaluated. Expressions of the form 0 + 0 are called
indeterminate since they cannot be evaluated. However we can find the

limit of A)/Ax as Ax approaches zero.

Lim Ay

This is written as —
Ax - 0 Ax

and is read as “the limit as Ax approaches zero, of A)/Ax ”

& In calculus this limit is called <2

dx

How do we show, in the above example that j—y =6at x=37
X

25

20

vt

15
9+Ay--1

10

At x =3 we take an
increment Ax.

Thendy = 3+Ax)*—9
Ay B+Ax)> -9

0 — =
Ax Ax

_ 9+6Ax+(Ax)* -9
Ax

_ 60x + (&)
Ax

= 6+ Ax

Now if we let Ax approach zero we can see that in the limit, */», becomes equal to
6. Hence dr _ 6 atx=3
dx

This is an example of finding a limit. Other kinds of limits will be considered
later in your course.

We can find a general formula for j—y in terms of x by a similar method.
X

CW/P-362.doc 2-3



Section 3: Calculus — Elementary differentiation

Consider some general point A, coordinates (x,y) on the curve y = x°.
Take an increment Ax in x, giving a corresponding increment Ay in y to point B on
the curve whose coordinates are (x + Ax, y + Ay)

T
>

Y ! AX !
: i Graph of
|
a e
0 ] x x+Ax X

p362 fig13

Since point B is on the curve y = x%, then (y + Ay) = (x + Ax)*.

Ay _ (x +Ax)* —x’
Ax Ax
x* +2x0Ax + (Ax)” - x?
Ax
2xAx + (Ax)®
Ax
= 2x+Ax

Now as Ax approaches zero, the chord AB approaches the tangent at A and we can
see that in the limit approaches 2x.

Hence if y = x%, dr _ 2x.
dx
The function 2x is called the derivative of the function x2.

Other terms used for derivative are differential coefficient and derived function.

CW/P-362.doc 2-4



Section 3: Calculus — Elementary differentiation

Function
notation

Definition of
derivative

If y = f(x) then j—y is written as f'(x).
X

We can now write a definition for the derivative of f(x) in terms of limits:

T
>
f(x + AX)
f0 AX
y = f(x)
0 X x + AX X -
0362 fig14

f(x + Ax) —f(x)

Ax

Instead of writing ®/4 we can also write “/q, f(x), treating %/4, as an operator acting
upon the function.

eg Yl = 2x
The value of ¥/4, at x = a is written f ().
For example, if f(x) = x* then f'(3) = 6.

The above method of finding the derivative by taking limits is known as
"differentiating by first principles". Later we shall find short—cut methods for
differentiating most functions.

CW/P-362.doc
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Section 3: Calculus — Elementary differentiation

SAQ3-2-1 a. Iff(x)=x", using the same method as above, find f'(x)
{ Note the binomial expansion: (a + b)’ =a’ + 3a’b + 3ab* + b’ }

b. Write down the values of:

@ 2 (i) f'@2)

CW/P-362.doc 2-6



Section 3: Calculus — Elementary differentiation

Derivative of | To save having to repeat a similar process every time we have to differentiate a

x" function such as x3, x4, etc we can derive a general formula for the derivative of x”,

where 7 is a constant.

This proof is included for interest only and uses the binomial theorem which will
not be taught until later on your course.

Let f(x) =x"
Then from our definition of the derivative

le (X+Ax”_x”

£'(x) =
(x) At - 0 A

Now, (x + Ax)" can be written as x"(1 + “/,)"

By the binomial theorem, since Ax is small, then for any value of n:

xn(l +Ax /x)n =xn {1 +n(AX/x) +n(m_1) (AX/X)Z +7’l(m _;)l’l _2) (AX/X)3 +eoeo
.. . + higher powers of Ax}
— xn + nxn—IAx + n(nz_ 1) + n(”l _1;(’1 - 2) xn—S (Ax)S 4o
.. . + higher powers of Ax

Subtracting x" and dividing by Ax we get:

le (X+Ax)n _xn
Ax - 0 Ax

Li - - -
— 1m nxn—l + ”l(”l l)xn—ZAx + n(n 1)(” 2) xn—3 (AX)Z +. ..
Ax - 0 2
...t terms containing Ax }

We can see that as Ax approaches zero, all the terms containing Ax disappear so
n—1

that it approaches the limit of nx

Hence f'(x) = nx""

This is true for any constant #; positive, negative, integer, or fraction.

CW/P-362.doc 2-7



Section 3: Calculus — Elementary differentiation

The derivative of x" is very important since many common functions such as
polynomials contain expressions of this kind. This result should be committed to
memory. It is restated below.

if y=x"
then
d Y n—1

dx = nx
Examples a. y=x, Yy =306H = 3y
b.  y=x" Yy = 46H = 4y
c. y=x, Yy = 16" =16% =1
d  y=x' Y =-1x"H = x°
e. y=x", Y =1nE"h = Ux "

Note that » can be any constant; positive, negative or fractional.

When we write ' /ax we are differentiating with respect to x, i.e. x is the
independent variable and we are finding the rate of change with y with respect to
X.

Derivative of a | The graph of y = C where C is a constant, is a line parallel to the x axis which has
constant zero gradient. Therefore, if y is constant, ¥/, = 0.

This is consistent with the above rule, since we can regard a constant C as being
0 o 0
Cx’, sincex =1.

Therefore ¥g (x") = 06> = 0

CW/P-362.doc 2-8



Section 3: Calculus — Elementary differentiation

SAQ3-2-2

Differentiation
as a linear
operation

Examples

Examples

Write down &’ /4. for the functions of x in the table.

y vy dx
a X
b X2
C x
d 0
e 4

Differentiation is a linear operation.

This means that the derivative of the sum of 2 functions is equal to the sum of the
derivatives. ie

If f(x) = fi(x) + fr(x)

then f'(x) = f{(x)+ £ (x)
ALSO ifk is a constant then Y4, k f(x) =k ¥/g f(x)
This means that when we have several functions added together, all we have to do
is differentiate them separately. Also, a multiplicative constant may be taken
outside the derivative.

Ify=x>+x* then ¥/q = 3x* +2x
1.e. simply differentiate term by term.

Ify=5x" then /g, = 5(2x) = 10x

1.e. the constant simply multiplies the derivative.

208 4 +3x+ 7, Vg = 6xF —8x +3

<
|

y = 2+ 2 W = -2t

CW/P-362.doc
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Section 3: Calculus — Elementary differentiation

SAQ3-2-3 Differentiate the following functions with respect to x.
(If necessary, refer to the table of derivatives on page 2—18)

a. y=2x2—x+2

b. y=4X+2x-5x"-3x-7

c. y=1K

e.  y=2"x—V()

£ y=(x-3)

g y=x—1i

h.  y=In(?

CW/P-362.doc 2-10



Section 3: Calculus — Elementary differentiation

SAQ3-2-4 Find the gradient of the curve y = 2x> — 9x* + 10 at the points
a. (2,-10) b. (0,10) c. @G,-17) d. (-1,-1)

and mark these points on the graph below.

30

20

10

y1

~10

~20

=30
v =2x"—9x*+10

~40
| 0 1 2 3 4 5 6

X —
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Section 3: Calculus — Elementary differentiation

Further
examples of
limits

Try the following exercise.
Using a scientific calculator, select the "radian" mode for angles. Enter a small
angle and calculate its sine. Then divide sin x by x, as shown in the table below.

Angle x (radians) sin x (sin x)/x

0-5 0-4794 0-9589

0-1 0-09983 0-9983

0-01 0-00999983 0-999983
0-001 0-00099999983 0-99999983
0-0001 0-000099999999 0-99999999
0-00001 0-000100000 1-000000000

sin x
We can see that as the angle gets smaller, the value of —— gets closer to 1.
X

Eventually, the calculator runs out of available digits and it shows the value as 1,
to the limit of its accuracy.

. . sinx .
However if we put x = 0 we obtain —— = 0 + 0, which cannot be evaluated.
X

sin x
It can be shown that —— approaches the value 1, as x approaches zero.
X

This is a very important limit which should be remembered. You will encounter it
later in signal processing and in antenna theory. It is written as:

Lim sinx

1
U

.X—)O X

The angle x is, of course, in radians.

A proof of this limit is given on the next page. This proof is given for interest only
and need not be memorised. The result, however, is very important.

Limits will be discussed further on your course at the Royal School of Signals.
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Section 3: Calculus — Elementary differentiation

Proof that OAB is a sector of a circle with an angle O (radians) at the centre.

Lim sinx _ | BC is a tangent to the circle at B. A tangent to a circle makes a right angle with
o0 the radius, in this case with the radius OB.
The radius OA is projected to meet the tangent at C.

C
/4
d
A//
r
0
@ F B

p362 fig16
Let the radius of the circle = r.
From elementary trigonometry:
The area of the triangle OAB = Var’sin 0
The area of the sector OAB = V0 (0 measured in radians)
The area of the triangle OCB = Vyr’tan O
Hence, it is clear that “%”sin® < Vir? < Ysr’tan ©

0 sin® < 0< tan®  (divided by Y4* which must be positive).

6
<
sin@ cos@

I <

(divided by sin 8, which is positive for small 0)

Now let 8 approach zero so that the 3 areas converge together and cos 0
approaches cos(0) = 1.

As 0-0:
1 < J < 1
sin
a — must approach the value 1.
sin O

CW/P-362.doc 2-13



Section 3: Calculus — Elementary differentiation

Derivative of
trigonometric
functions

We shall use the above limit to find the derivative of sin x.

Firstly, let us examine the graph of y = sin x.

If we measure accurately the gradient of this curve at various points we get the

following results. Note that the x axis is plotted in radians, not degrees.

gradient (*/a.)

X
0 1

4 0-707
V2 0

3174 —0-707
T -1
5174 —0-707
31172 0

7174 0-707
2n 1

If we plot the graph of this gradient we obtain what must be a periodic function. It
looks remarkably like a cosine curve. This is no coincidence since the derivative
of sin x is, in fact, cos x.

A proof of this is given below. Later in this section there will be another proof by
a different method.

CW/P-362.doc



Section 3: Calculus — Elementary differentiation

Derivative of
sin x

Derivative of
CcoS X

The following proof is for interest only and need not be learned.
Let f(x) = sin x

Lim  sin(x + Ax) —sinx
Ax - 0 Ax
Applying the trigonometric identity:

sin4—sin B = 2 cos Y2(4 + B) sin (4 — B)

Then by definition f'(x) =

we obtain
sin(x + Ax) —sin x = 2 cos(x +27,) sin(*/,)

Lim  sin(x+ Ax) —sinx

A - 0 Ax
5l %)
. 2cos| x+— [sin| —
_ Lim 2 2
A -0 Ax

sin &
Lim ( ij 2
COS| X +7

Ax - 0 Ax
2
Now from the previously proved limit: Lim  sin@ =1, where 0 is in radians.
6-0
sin Ax

U 2 approaches 1 as Ax approaches zero.

Ax

2

Also, the “*/, in the bracket disappears and so
f'(x) = COS X
Hence, d/dx sinx = cosXx

Note that x is always in radians.

By a similar method it can be proved that

d .
/4 COSX = —SIn x

CW/P-362.doc



Section 3: Calculus — Elementary differentiation

Derivatives of
other functions

Derivative of

X

€

Derivative of
Inx

Table of
derivatives

An important derivative is that of e".

¢" is the function whose rate of change is equal to the value of the function at any

instant, ie

4 e =e

Another important derivative is that of the natural logarithm, In x.

4 Inx = 1/x

A table of some common derivatives is given below.

y dy

dx
x" nx"!
e’ e’
In x 1

X
sin x COS X
CcOoS X —sin x

2
tan x sec™x
2
cot x —cosecx
sec x sec x tan x
COSEC X —cosec x cot x
sinh x cosh x
cosh x sinh x
2

tanh x sech™x
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Section3: Calculus — Differentiation; product and quotient rule

Diferentiation |We have seen that the derivative of a sum is equal to the sum of the derivatives.
of a product However, this does not work for products, ie the derivative of a product is not the
product of the derivatives.

The product rule is as follows:

Ify=uv
where u, v are functions of x

dy _ dv  du

dx dx dx

Examples 1. y=x’sinx
Let u = x* then %/, = 2x
Letv=sinx then %/4, = cosx

d 2 .
YIe = x“cosx + 2xsinx

2. y=x¢
Let u=x then %/, = 1
Letv=¢" then 9/, = €

by = xe + €
With a bit of practice, you should be able to write down the answers directly
without the intermediate steps.
3. y=¢€'cosx

Let u = x* then %/, = 2x

Letv=sinx then %/4, = cosx

d .
YIe = € cosx — € sinx
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Section3: Calculus — Differentiation; product and quotient rule

If a product contains more than 2 factors, they must be grouped in pairs and the
product rule applied more than once.

Example y=2x"¢" cosx
Group 2 of the factors together
Let u = 2x°, v = (e" cos x)
_ 2 dv _ X X :
o =6x7, lie = € cOsSX—€ sinx

O Y4 = 2x° €'(cos x — sin x) + 6x° ¢* cos x

SAQ3-3-1 Find /4, where:
a. y= 3x” tan x
b. y=xhx-x

c. y=¢ sinxcosx
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Section3: Calculus — Differentiation; product and quotient rule

Differentiation |The quotient rule is as follows:
of a quotient

u

If y= 5

where u, v are functions of x

In this formula, unlike the product formula, it is essential to have the u and v the
correct way round.

Example 23—y
- x*+1
Letu = 2x’ —x then “/g, = 6x% — 1
Let v =x>+1 then %/y, = 2x
by - (x* +1)(6x* =1) - (2x° —x)2x

(x2 +1)2

2xt +7x% -1
(xz +1)2
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Section3: Calculus — Differentiation; product and quotient rule

Example Differentiate with respect to x

xsinx
x+2

This contains both a product and a quotient.

Letu = xsinx then ®/q = x cosx + sin x, by the product rule.
Letv = x+2 then®/y =1

(x +2) (xcosx +sin x) —xsinx

dy/ —
dx
(x+2)°
B (x+2)xcosx+25inx
(v+2)°
SAQ3-3-2 Differentiate with respect to x, the following functions.
X —x*+3
a. D
2x +1
xZ
b.
3x+5
5x* e
1+x°
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Section 3: Calculus — Differentiation; function of a function

Chain rule

Example

So far we have only considered simple functions of x such as polynomials and
single trigonometric functions.

A function of a function is an expression of the type F{f(x)} where f(x) is a

function of x and F{f(x)} is a function of f(x).
For example.

y=alx’ +1
x% + 1 is a function of x and vx? +1 isa function of ¥* + 1.
y=2=¢
2x is a function of x and e** is a function of 2x.
These functions cannot be differentiated by any of the rules we have used so far.
To differentiate a function of a function we use the chain rule which is:
If y is a function of z where z is a function of x, then

dy _dy dz
dx dz dx

This rule is very easy to remember since it appears that we are "cancelling" the dz.

This is not quite true, since a derivative is not a ratio but the limit of a ratio. A
rigorous proof of the above rule is beyond the scope of this course.

y=qlx’ +1
Letz = x*+1, y=zl/2
L = 2x, Yy, =" =P +1)”

Yo =Y g = BEE+H 1) (2%)

= a1
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Section 3: Calculus — Differentiation; function of a function

Example y =sin’x
Letz = sinx, y =z
e = cosx, /. =2z = 2sinx
by =Y = 2 sin x coS x
Example y = In(x*+ 1)
Letz = x* +1, y=lInz
e = 2x, Y. =1z = UE*+1)
dy o dy Ay 22X
x” +1

Derivative of | A very important derivative is that of €” where a is a constant.

ax

€

ax

y =¢€

Letz = ax, y=¢€

dz/dx = qa, dy/dz — ez _ eax
dy/dx :dy/dz dz/dx — aeax

e.g. Y (%) = 2eF

Deriviative of | Another important derivative is that of sin ax or sin w¢

sin 0¥
y = sin W
Letz = w¥, y = sinz
Ly = w Y/ = cosz = cos WY
b =Y ¥y, = Wcos Wt

Which shows that the rate of change of a sine wave is directly proportional to its
frequency.
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Section 3: Calculus — Differentiation; function of a function

Example

Example

SAQ3-4-1

The derivative of the sine or exponential of any linear function of x is similar.

ax+b

y =€

Letz = ax+tb,

dy =

dy/dx —

y = sin(wx + @)

Letz =ax+ @
dz/dx =W
dy/dx — dy/dz

a

dy/dz

dzy

dzy

dx

dx

"
dy/dz —ef = ¥ b

y=sinz
Y. =cosz = cos(wr + @)

= wcos(wx + @)

After some practice you should be able to write down the answers without having
to go through the intermediate substitutions.

Find the derivatives, with respect to x, of the following functions:

a.  V2x*+4x

b. tan® x

c. In(x+3x)

d. 2x + 1

e. In(secx + tan x)

£ GBx+2)"”

g sin(2x + 176)
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Section 3: Calculus — Differentiation; function of a function

Extension of
chain rule

Example

SAQ3-4-2

The chain rule can be extended to more complicated functions of functions of
functions, ie

dy _dydudv
dx dudvdx
y = V(sin 2x)
v = 2x, u = sinv, yzu%
by =2, duyi, =cosv = cos 2x, Y = Vou " = Yy(sin v) "
= Vs(sin 2x) "
Y = Y Yo g

= 2 x cos 2x X Va(sin 2x)

cos2x

\/_(sin Zx)

Find ¥/¢c where y = In(cos 4x)
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Section 3: Calculus — Differentiation; function of a function

Sometimes a problem has to be split into separate parts

Example y = In(x+ [2 +1)
Letz = x++/x" +1 y=Inz
Y = 1/z = WU(x+x* +1)

Now, vx* +1 isitself a function of a function

Letu = x> +1, v=x2+1, u=1v"

W = Y Y = W 2x) =x(*+ 1)
Hence, “/ge = 1+x(x*+1)"
x* +1
dy/dx = dy/dz /dx
1+
_ Vx® +1
x+x>+1
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Section 3: Calculus — Differentiation; function of a function

Derivative of |We can use the function of a function rule to find the derivatives of sine and
sin x cosine.

You will recall from Section 2: Complex numbers that

) jX_e-jx
sinx = -
2]

SAQ3-4-3 cosx = V(e +e)

By differentiating this expression, show that Y ax (cosx) = —sinx
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Section 3: Calculus —Higher derivatives

Second
derivative

Examples

Third
derivative

The derivative of y with respect to x is the rate of change of y with respect to x. In
mechanics, ds/dt is the rate of change of distance, s, with respect to time, . This
is called velocity, v. The rate of change of velocity with respect to time is called
acceleration, a. Hence, a = dv/dt.

0O a=% (“a)
This is the second derivative of s with respect to ¢ and is written dzs/dtz .

oAy d”y
Similarly, 7| | 1s written as di

It is said as "Dee two y, dee x squared" but note that it is not actually x squared and
is not the derivative with respect to x°.

4/, is sometimes called the first derivative.

y = ©, Yy =37 e = 6x

sin Y, b/ = Wcos WY, e = —of sin oy

<
Il

The derivative of the second derivative is called the third derivative, and is written
as /aw.  Similarly the derivative of the third derivative is called the fourth
derivative, etc.

In function notation the first derivative is written f'(x). The higher derivatives are
written in a similar manner:

Second derivative f"(x)

Third derivative f"'(x)

Fourth derivative £""(x)

Fifth derivative £'(x)

Sixth derivative £V (x)

n'™ derivative £ ()
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Section 3: Calculus —Higher derivatives

SAQ3-5-1 Ify = flx) = x*+4°+2x%-2x+1, find
a. Yy
b. /e
c. Y
d Q)
e. f"(1)
£ f£"(-1)
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Section 3: Calculus —Higher derivatives

SAQ3-5-2 The distance s metres of a body, moving in a straight line, from a fixed point, at
time ¢ seconds, is given by

s =5 — 147 + 8¢
itv = ds ion = d %
If velocity TE acceleration e

Find:

a.  The 2 times after # = 0 when the body is again passing through its point of
origin, and its velocity and acceleration at these 2 instants.

b.  The times at which the velocity is zero, and its acceleration at these instants.
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Section 3: Calculus — Integration

Integration

Arbitrary
constant

Integration has many important applications in electrical theory and signal
processing. Originally, integration was derived as a method of finding areas but
was then proved to have a relationship to differentiation. For most purposes,
integration may be regarded as the reverse process to differentiation. For all of the
elementary continuous functions which we shall encounter, integration can be
performed in this way.

In the previous chapters, we had to find /o given y. Suppose we are given /o
and asked to find y. For example:

Y/ = 2x, find y
We know that if you differentiate y = x%, you get Y= 2x, so we could say that
the answer is y = x°. However if you differentiate y = x> + 1 you also obtain
¥, =2x. In fact if you differentiate y = x> + C where C is any constant, you
obtain /4, = 2x.

Therefore we write y = x* +C

This is illustrated in the graph below.

x4

For some particular
value of x, all these
curves have the same
gradient, since by s
equal to 2x for all of
them.

Therefore, given by
we cannot determine y 5
exactly.

0
'/ gradients are all equal
for this value of x.

C is called an arbitrary constant because it can take any value. We cannot
determine the value of this constant unless we are given additional information.

For example, suppose we are given the additional information that y=2 when x=1.
We have y=x>+C
Substituting x=1, =2 we get 2=1>+C
OC=1
Hence y = X +1
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Section 3: Calculus — Integration

Symbol for
integration

Integral of x”

The symbol for integration is an elongated S. Thus we write

I2xdx =x¥+C

The dx indicates that we are integrating with respect to x and must not be left out.
This type of integral is called an indefinite integral because it contains an arbitrary
constant. The arbitrary constant must not be omitted, since, as you will discover in
applications to circuit theory, the arbitrary constant has a particular meaning.

To integrate simple functions we can simply use differentiation in reverse.

We know that g (x") = nx""' therefore if we integrate x” the power must
increase by 1. It is clear that

Ix”dx=n+l + C

We can check this by differentiating back again

Q {xnﬂ } _ (n+1)xn+1—l _

n+l n+l

This integral is true for any value of n, positive, negative, or fractional,
except for n=1.

If we put =1 we get x"+0 = 1+0. This cannot be correct. We know that
Y4 (Inx) =x"', hence:

I x'dx = Inx+C

Note that In x + C can also be written as In(Kx)
where by the rules of logarithms, C =1n K (cf Section 1: Algebra)

If C is an arbitrary constant then K must also be an arbitrary constant. As we do
not know what the constant is, it does not matter what we call it (A, B, C, etc). In
this text we shall use capital letters to denote arbitrary constants, avoiding letters
such as X, Y which we commonly use for variables.
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Section 3: Calculus — Integration

Table of Most of the common integrals can be found simply by looking at our standard
standard derivatives. A table of standard integrals is given below.
integrals

fx) [ £ dx

x LA (n#-1)

n J—
n+l

1 Inx+C

X

¢ ¢ +C

sin x —cosx+C

COS X sinx+C

tan x In(sec x) + C

sec x In(sec x + tanx) + C

cot x In(sinx) + C

cosec x In(tan Y2x) + C

sec” x tanx + C

sinh x coshx+C

cosh x sinhx+C

O C is an arbitrary constant
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Section 3: Calculus — Integration

SAQ3-6-1

Integrate the functions in the table below:

fx)

[ feodx

Vx

1/Vx
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Section 3: Calculus — Integration

Integration as a |Since differentiation is a linear operation, integration must be a linear operation
linear also, ie
operation
If kis a constant then [ kf(x)dx = & [ fx) dx
and
[ o+ bt = [ fi)det | B de
Example J 2cosxdx = 2-[ cos x dx = 2sinx+C
Example j 12¢%dx = 12 j Pde=  126%3)+C = 4’ +C
Example [ @red+2crdyar = a2l 4+ C
Example J- (cosx—sinx)dx =  sinx+cosx+C
Example —(x2 )
P J-—x_3dx = (x2) +C = Vax 4+ C
= L i¢c
2x°
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Section 3: Calculus — Integration

SAQ3-6-2

Determine the following integrals:

®

j G+ 88 — 152 +x — 1) dx

dx
J‘2\/_)c

J- (3 cos x + 2 sin x) dx

[ G+ dx
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Section 3: Calculus — Integration

More
complicated
integrals

Exponent of a
linear function

Examples

Although it is possible to differentiate the most complicated expressions by using
product, quotient, and chain rules, integration is not quite so easy. There is no
general product rule and no quotient rule. Integrating functions of functions is not
always possible and there are various techniques and standard integrals which will
be taught later on your course at the Royal School of Signals.

In this text, we shall only consider integrating expressions which are functions of
linear functions of x.

J e dx where a, b are constant.

We know that ¥/, e®™? = ge®*?
Hence, we deduce by the reverse operation that

J-eax+b dx — l/a eax+b + C

since, if we differentiate back again, the !/, cancels the a in the derivative of e,

Check this yourself by differentiating '/, e**.

Note that this only works for linear functions of x. For example

J- e® dx cannot be found at all, by this, or any other method.

J62x+l dx — 1/2er+1 +C
J-e—4x+2 dx — _% e—4x+2 +C
Jex/Z dx — 2 ex/2 + C
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Section 3: Calculus — Integration

Sine and cosine _[sin (wt+ @)dt
of linear
functions d )
We know that “/4; cos(wx + @) =  —wsin(wx+ @
Therefore by the reverse operation we deduce that
J-sin(a)t+ qo)dt = “Yycos(wr+@ + C
You should check this by differentiating back again.
Example [sin(2t+7/6)de = —Yhcos(2t +T06) + C
Similarly since Y/g; sin(w¥ + @) = wcos(wx + @)
we can deduce that
J-cos(a)t+ ¢)dt = Yesin(wr + @) + C
Check this by differentiating back again.
Example foos(0O¢=133)ds = 10sin(0-1¢~1-5) + C
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Section 3: Calculus — Integration

SAQ3-6-3 Determine the following integrals.

a. J e* dx
b [
c J e dx

d. j cos(2x + T13) dx

e. [ sin(0-01¢+0-5) d
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Section 3: Calculus — Definite integrals

Area under a
curve

Consider the graph of y = f(x) at some arbitrary point x.

\ y =)
AA
f(x) f(x + Ax)
0 X X+ AX X —>
— AX ¢&——

p362 fig19
Taking a small increment Ax in x, we obtain an increment in the area between the

curve and the x axis which we shall call AA4.

We can see that A4 is greater than the area of the rectangle whose area is f(x) Ax
and that AA is less than the area of the rectangle whose area is f(x+Ax) Ax.

i.e. flx) Ax £ A4 < f(x+Ax) Ax
AA
O f(x) £ — < f(x+tAx
(x) A ( )

Now suppose we let Ax approach zero. M approaches . and f(x+Ax)
approaches f(x). Hence, in the limit

dd _
E_f(x)

ie the area is changing at a rate which at any point is equal to f(x).

Therefore, the area A varies with x in accordance with some function
4 = [fxdx

Let us call this function F(x) + C which is the indefinite integral of f(x) with
respect to x.
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Section 3: Calculus — Definite integrals

The intregral contains the unknown constant C because the only information we
have initially is the rate of change of area f(x) and we have an unspecified starting
point from which to calculate the area.

We can assume that there is some unspecified point x=x, on the x axis, up to which
the area is zero (this point may be —0). Suppose we wish to find the area between
2 values of x; x=x; and x=x,.

y —>

\//

X 0 X X X —>

|Graph of y = (x)]

p362 fig20

The area under the curve between x=x( and the ordinate at x=x; is equal to
F(x)) +C.

The area under the curve between x=x( and the ordinate at x=x, is equal to
F(x;) +C.

where
For)+C = [ flodr

Hence, the area bounded by the curve, the x axis and the ordinates at x=x; and
X=x, is given by

{ F(x2) + C} — { F(x;) + C}
=F(x2) —F(x1)

This is written as

N f(x)d x
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Section 3: Calculus — Definite integrals

Example

A=x+C

Y >
AREA —

-1 0) 1 2 3 X— KO 3 X

p362 fig21 p362 fig22

Consider the function (x) = 3x*. We wish to find the area under the curve between
the x axis and the 2 ordinates x=1 and x=2, as shown in the shaded area of the
diagram.

We have shown that /g, = f(x) = 3x°
o A= I3x2dx = xX+C

The graph of 4 against x is shown on the right. We do not know the value of C
but this does not matter because the required area is the difference between 2° + C
and 1° + C which is equal to 7.

f 3x’dx

We write this as

2
[x3]1 =217 = 7

The 2 numbers on the integral sign are called boundary values. The one at the top
is called the upper limit of integration and the one at the bottom is called the lower
limit of integration.

The square brackets mean "evaluate the function in brackets at the 2 limits, and
subtract the value at the lower limit from the value at the upper limit."

Note that we don't usually write + C in the bracket because C has cancelled out, as
it has the same unknown value at both points.
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Section 3: Calculus — Definite integrals

Definite This type of integral is called a definite integral because the arbitrary constant
integral disappears.
Examples 11 [(8x +27 ~4x +2) d

= ot +x'/3-2x07 4 2x]) = (162+9-18+6)— (32+8/3-8+4)

128 /4

T, -
2. L sin x dx = [—cos x]0 —cos Tt— (—cos 0)

=  (D-CD 2

(Always remember: angles are radians in calculus)

3, J:e’xdx: [—e'*]: = 0-(1) = 1
2 dx
4. 17 = [lnx]l2
= In2-In1l
= In2-0
= In2 O 0-693
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Section 3: Calculus — Definite integrals

SAQ3-7-1 Evaluate the following definite integrals

a [ 0x* =20 +6x-1) dx

7T/ 6

b. A 2 cos x dx
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Section 3: Calculus — Definite integrals

Integral as a
sum

Integration was originally derived as the sum of an infinite number of very small
quantities.

7

0] a b X -

—3 AX <
p362 fig23

If we divide the area between x=a and x=b into a number of narrow strips of width
Ax, at some particular value of x, the strip is approximately a rectangle of height
f(x) and width Ax. Therefore the area A4 of the strip is approximately given by

A O f(x) Ax

If we make the strip narrower, the error is assuming a rectangle becomes less. The
total area is approximately given by

A Y ()4

The letter 2 is a short—hand way of writring "the sum of all such terms", ie

(o)) Ax + f(xp) Ax + f(x3) Ax + f(xg) Ax + - - -
from x=a to x=b.

If we let Ax approach zero, so that we are summing an infinite number of
infinitesimally small rectangles, then this sum approaches the area under the curve
which is the integral of f(x) from x=a to x=b. Therefore

L' x=b
Axlin o LIMAr - J £ dx

The symbol used for integration which is a Gothic letter S, replaces the Greek
letter S or > which stands for "sum".
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Section 3: Calculus — Definite integrals

Negative area

Units of an
integral

Example

When we integrate, we are summing up the products of Ax, which is a positive
increment in x, with values of y. If the values of y are negative then the product is
negative. Therefore any area which lies below the x axis has a negative sign.

T

>

y=x" - 2x

Find the area
between the curve
y=x*—2xand the 0 1 2 X—>
X axis, between
x=0 and x=2.

P -20de = [B-x? = (IB-4) -0
o 0

= =_1! /3
The negative sign merely indicates that the area lies below the x axis.
Note that it is not necessary to write "square units" after the answer to a definite
integral. The units of an integral are the product of the units on the x and y axes
and unless the axes are labelled with units we cannot give specific units to the
integral. However, in practical problems when units are given, it is essential to
state the units of an integral (or of a derivative).

y axis: velocity (m/s); x axis: time (seconds)

The units of ¥ /4 Willbem/s +s = m/sz, 1e acceleration.

The units of I ydx will be m/s xs = m, ie distance.
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Section 3: Calculus — Definite integrals

If an integral has both negative and positive parts to it, then they will add to give a
smaller sum. For example consider a sine function integrated over one cycle.

The area consists
of a positive half
and an  equal
negative half.

Therefore, the
integral of this
function between
x=0 and x=2Tt must
be zero.

We can confirm
this by integrating.

2
I sin x dx

0

sin(x) 0 \\\

[cos x]

1-(-1) = 0

Although the scalar magnitude of the "area" is not zero, the value of the integral is
zero. Physical interpretations of negative integrals will be encountered later in
your study of power in ac circuits.

It should be appreciated that "area" is merely a graphical interpretation of an
integral, just as gradient is a graphical interpretation of a derivative. If the x and y
axes were both calibrated in millimetres then the integral would of course be an
actual area in mm®. In an electrical problem, an integral would mean some other
physical quantity. For example, if we had current as a function of time, then

J- i dt would represent charge, and the unit would be amperes x seconds =

coulombs.
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Section 3: Calculus — Definite integrals

Partitioning of
an integral

Y—>

Consider the function
y = f(x) as shown in the
diagram. It is evident
that the area under the

curve between x=1 and _/
x=6 is the same as the

sum of the 2 areas from /\
x=1 to x=3 and from /

x=3 to x=6 /

0 1 2 3 4 5 6 X—

ie ff(x)dx: ff(x)dx+ ff(x)dx

In general, we can say that if f(x) is integrable over the interval x=a to x=b, and
point ¢ lies in that interval, then

[fede - [fedre ff(x)dx

It is sometimes necessary to partition a function into 2 or more parts in order to
find the integral. This is because in some cases we cannot find a single expression
for the indefinite integral over the whole interval.

There are many functions for which it is not actually possible to find an indefinite
integral at all, although the definite integral exists and can be found by other

means.

The following example, which is important in electrical theory, illustrates where

partitioning is necessary.
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Section 3: Calculus — Definite integrals

Example

Yy —>

+A

. -
-A *Snmmans®®

p362 fig27

For example, consider a rectified sine wave of peak value A4, represented by the
solid line on the graph above.

This can be written as y=|Asinx|
(The vertical lines mean the modulus or absolute value.)

To integrate this we have to split it into the sum of 2 functions. ie

v = {A sin x for 0 <x <m
—A4 sin x for TI< x < 2Tt

Between x=0 and x=Tt the function has the equation y = 4 sin x.
Between x=Tt and x=2T1 the sine wave (shown dotted) has been inverted and
therefore has the equation y = —4 sin x over this interval.

27T X T . 27 .
Hence, _[0|As1nx|dx JOAsmxdx + I — Asin x dx

A[—cosx]] +  Afcosx]

A-D =Dy +

Y

A{l - (=1}

The reason there is no sikngle expression for the indefinite integral over the whole
interval is that, although function is continuous over the interval, the derivative is
discontinuous within the interval.

For 0 <x <1 ¥/4 =A cosx. For T<x<2T Y4 =-A cos x.

At x=T1, the derivative cannot be defined, as it is different immediately to the
left and right of this point. A function cannot be differentiated at a "sharp corner".
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Section 3: Calculus — Definite integrals

Mean values

/I— : N
i i | va | V3 Yo :
SEIREREEE NN
0 a IE ;'
Ale

Consider the function y = f(x) in the interval x=a to x=b.

If we divide the interval into n equal narrow strips, the mean value of y in that
interval could be approximated by adding up the heights of all the mid—ordinates
(the dotted lines) and divided by the number of ordinates, to give us the average or
mean height. This is making the assumption that each small section of curve is a
straight line and so each strip of width Ax is a trapezium. This method is quite
accurate if the strips are narrow.

ie

Mean valueof y O (y; +y, +y3+ - +y,+n

Which we can write more succinctly as: 1/n Z v,
i-1

Now the area is the sum of the areas of all the trapeziums
which wouldbe equal to >y, Ax = Ax Yy,
i1 i1
The length of the interval is (b—a) and so Ax = (b—a) +n
] area = (b—a) 1/n Zn: v, = (b—a) x mean value
=)

This is what we would expect, ie the area under the curve is equal to the average
height multiplied by the width.

Now, the values of y are continuously varying in the interval, and the true mean
value and the true area would be obtained if we let Ax approach zero and n
approach oo, so that we are summing a greater number of narrower trapeziums.
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Section 3: Calculus — Definite integrals

Rule for
finding mean
value

b
In the limit, the area becomes L Y dx
b
[ (b—a) x mean value = L Y dx
1 b
Hence mean value = J. y dx
b—a ‘e

Thus, if we know the function and can integrate it, we can find its mean value.

The rule is highlighted below.

Mean value of f(x)
in the interval x =atox=>5b
1S

1
b-a

[F(x) d

1.e. integrate the function over the interval and divide by the length of the interval.
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Section 3: Calculus — Definite integrals

Example T
>
y=2x— X
1 2 X—>
-1
p362 fig29
1 2 )
Mean value = —_— J- (2x —x7)dx
2-0
= -5}
= %B@E-5-00 =
Example Find the mean value of the rectified sine wave y = |4 sin x| in the interval x=0 to
X=2T1
+A I~
|
0 ! N
I 2m
Al
X
From page 10, the value of the integral over this interval is 44.
Therefore, the mean value of 4a +~ 21 = 24/t O 06374
You may recognise this figure from the theory of rectifiers.
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Section 3: Calculus — Definite integrals

SAQ3-7-2 Find the area between the x axis and the curve y = 2x> — 12x* + 12x — 3
from x=1 to x=4.
What does the negative answer indicate?

SAQ3-7-3 T
Evaluate _[0 | COS X | dx

SAQ3-7-4 Find the mean value of the function f(x)=x in the interval x=1 to x=3.
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Chapter 8
Solutions to SAQs
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Solutions to SAQs

SAQ3-1-1 Equation Gradient Intercept
y=5x+1 5 1
y=-2x+4 -2 4
y=—1"5x-2 -1-5 -2
y=x-3 1 -3
y=4 0 4
SAQ3-1-2
y=3
y =2x—1
I I I l l
-6 -4 -2 s 2 4
_4__
- 6__
- 10__

a. y=2x-1 Gradient =2
b. y=-2x+2 Gradient = -2
c. y=3x Gradient = 3

d y=-8 Gradient =0
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Solutions to SAQs

SAQ3-1-3 | 206 _

substituting x =1, y =6; 6=7+c Uc=-1

Equation is y=Tx-1
+
b. m=25 2 = 3 Oy=3x+c
4+5
substitutingx =-5, y=-2; -2=15+¢ Ue=13
Equation is y=3x+13
c. m=5_15 = =2 Oy=-2x+c
3+2
substitutingx =3, y=5 S5=-6+c Ue=11
Equation is y=-2x+11
d. m=ﬂ = -4 Oy=-4x+c
5-1
substitutingx=1, y=20 20=-4+c¢ Uec=24
Equation is y=-4x+24
+
e. m=12 4 = 2 UOy=2x+c
6+2

substitutingx=-2,y=-4 —4=-4+x Ue=0

Equation is y=2x
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Solutions to SAQs

SAQ3-1-4

p362 fig31

a. Atx=1, gradient = 2
b. Atx=05, gradient = 1
c. Atx=2, gradient = 4
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Solutions to SAQs

SAQ3-1-5

y —>

3n/2 27 X—>
p362 fig32
a. Atx=0, gradient = 1
b. Atx=Tg gradient = —1
c. Atx=21 gradient = 1

At x =102 and 3172, The slope is zero, as the tangents are horizontal.

Lim  f(x+Ax)—f(x)

SAQ3-2-1 By definition f'(x) =

Ax - 0 Ax
If f(x) = x°
Li 3 _ .3
Ax - 0 Ax
_ Lim  x’ +3x% Ax +3x(Ax)* +(Ax)’ —x°
Ax - 0 Ax
_ Lim  3x’Ax +3x(Ax)” + (Ax)’
Ax - 0 Ax
Lim 5 5
= 3x" + 3xAx + (Ax)
Ax - 0
= 3x°
b. f(2)=2°=3, f(2)=3x2"=12
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Solutions to SAQs

SAQ3-2-2 y Y
X 5yt
x? 2x
xfl/z 71/ 2x*3/2
x3/ 2 3 /2 xl/z
4 0
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Solutions to SAQs

SAQ3-2-3

dy/dx

dy/dx

dy/dx

dy/dx

dy/dx

dy/dx

dy/dx

dy/dx

2% —x+2

4x -1

40+ 2% —5x° —3x -7

20x* + 63 — 10x — 3

CW/P-362.doc

1/%° = X
3x? = 3/
Vx = x*
Vox = 1/2Vx)
2Vx — V() = -y
x 23" = 1Nx =3/ Vx
(x —3)? = xX—6x+9
2x—6
¥ — 1% = ¥ -x?
2x + 273 = 2x +2/%°
In(x?) = 2lnx
2/x
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Solutions to SAQs

SAQ3-2-4

flx) = 2¢° = 9% + 10

f'(x) = 6x° — 18x

£(2) = -12
£(0) = 0
£(3)= 0
f(-1) = 24
!
10
5
2 - 0 1 3 X—>
-5
-10
-15
-20
| y=2x -9x +10 |
p362 ig33
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Solutions to SAQs

SAQ3-3-1

a. y= 3x” tan x

by = 3x% sec’x + 6x tanx

b. y=xlhx-—x

e = xx+lhnx -1 = Inx

c. Yy =¢€sinxcosx
Letu = €' sinx, V = CcoSX

e' cosx +¢e'sinx

then /4,
= ¢'(cosx + sinx)
/e = —sinx

Y/ = & sinx (-sinx) + cos x e*(cos x + sin x)

= ¢'(cos’ x —sin” x + cos x sin x)
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Solutions to SAQs

SAQ3-3-2 o =x2+3
a. y = _
2x+1
dy 2x+D)(3x* =2x) - (x* —x* +3)2
dx (2x +1)*

45 +x* =2x-6

(2x+1)°
X2
b =
Y 3x+5
dy _ Gx+5)3x-3x7
dx (3x +5)?
_ 3x’+10x
(3x +5)?
. _ 5x%e”
Y 1+x?
Letu = 5x° ¢, v=1+x
Then “/q = 53¢+ 10x e = 5xe’(x +2)
dv/dx = 2x
dy (1+x%) Sxe* (x+2)—(2x)5x%e”
dx (1+x?)?

S5xe” (x> +x+2)
(1+x7)?
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Solutions to SAQs

SAQ34L [y, - e

Letz = 2x* + 4x, y = ”
Elye = dx+4, V9w = Yoz = 227+ 4x)

Y =Y Y (2x + 2)(2%° + 4x)

2(x+1)

\2x? +4x

b. vy = tan’x
Letz = tanx, y = z
e = sec’ x, by, =2z = 2 tan x
Y =Yy ¥y = 2 tan x sec’ x
c. y = In(x* + 3x)
Letz = x> + 3x, y=Inz
Ll = 30 +3, Yy =1z = 1/ +3x)
2
+
by by by 3?36 3
x~ +3x
d. y — er+1
Letz = 2x + 1, y=¢
dz/dx — 2’ dy/dz — eZ — er+l
dy/dx :dy/dz dz/dx — 2 er+1
e. y = In(sec x + tan x)
Letz = sec x + tan x, y=lInz

%/ = secxtanx +sec’x, Vg =1/z 1/(sec x + tan x)

2
d dz secxtanx+sec” x
dy/dx = y/dZ /dx =

secx +tanx

secx(secx +tanx)

sec x
secx +tanx
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Solutions to SAQs

£y = (@x+2)"
_ _ 12
Letz = 3x+2, y =z
e = 3, Ve = 122" = Gx+2)"
Yo = Ve ¥ = 30Gx+2)"
g y = sin(2x + T76)
Letz = 2x + 106, y = sinz
e =2, Y. = cosz = cos(2x + TU6)
Yo = Yo ¥y = 2cos(2x + TU6)
SAQ3-4-2 y = In(cos 4x)
Letv = 4x, u = cosv, y=lInu
g = 4, W = —sinv = —sindx, Y/g, = 1/u = l/cosv = l/cos 4x
Yo = Y “av Ve
_ “dsindx =  —4tandx
cos4x
SAQ3-4-3 cos x = e
Yalcosx) = ([ —je™)
_ e -e™)
2
B ol se)
2]
- M - _sinx
2]
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Solutions to SAQs

SAQ3-5-1

y = f(x)
dy »
T

&y »
£(2)
£(1)

£7'(~1)

a2 -2+ 1
4o + 1207 + 4x -2
12x* + 24x + 4

24x + 24

4x2% + 12x2%* + 4x2 -2
12x1% + 24x1 + 4

24%(~1) + 24

86

40
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Solutions to SAQs

SAQ3-5-2 s=56"— 147 + 8¢
a. We have to find the values of  when s=0.
ie. when 5/'—14°+87 =0
A(5F —14t+8) = 0

This gives the solutions; t2=0, [J =0, which is the starting time, and
5¢ — 14¢t+8 = 0 which is a quadratic equation with 2 roots.

We can find these by factorising, ie (5¢—4)(t—2)=0

[0 r=0-8 seconds, =2 seconds

g = 208 - 427 + 16t

£'(0-8) = —3-84, hence velocity at this point = —3-84 m/s
f'(2) = 24, hence velocity at this point = 24 m/s

4 = 60 —84t+ 16

£°(0-8) = —12-8, hence acceleration at this point = —12-8 m/s
f7(2) = 88, hence acceleration at this point = 88 m/s

b.  When velocity is zero, 20£ — 427 + 16t = 0
O 24107 -21¢+8) = 0
212t - 1)(5t-8) = 0

This gives the solutions; =0, 0-5, 1-6 seconds.

At =0, f''(0) = 16, hence acceleration at this point = 16 m/s’
At =0-5, t''(0-5) = —11, hence acceleration at this point = —11 m/s
Atr=1-6,1""(1:6) = 35-2, hence acceleration at this point = 35-2 m/s’
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Solutions to SAQs

SAQ3-6-1

f(x) [fx)dx

x Yex®+C

Vx = x”* *3x) +C

IWx = x" 2x*+C = 2Vx+C
X’ —~x'+C =-1/x+C
X v+ C

3 3x+C
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Solutions to SAQs

SAQ3-6-2 a. [ Gx°+8 157 +x=1)dx

= vl + 20— 5 +ox —x+C

b. Zdx = 2jx‘ldx
X
= 2Inx+C = In(K¥)
=%
c. J-dx = %Ix dx
2\/_x
= %x2x*+C = Vx+C
d. jidx = 2jx‘3dx
x3
= x?2+C = “1/¥*=C

e. J-(3cosx+2sinx)dx

= 3Icosxdx+ZIsinxdx = 3sinx—2cosx+C
£ @+ dr

= dex+jx_%dx = ux’+2x* +C

= x> + 2Vx + C
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Solutions to SAQs

SAQ3-6-3  |a [edx
_ 1/ er + C
b. J-e“_z dx
_ 1/ e3x72 + C
c. e "dx
= —€'+C
d. J- 2x + 77/ 3 dx
=  Ysin@x+13)+C
e.  [sin(0m016r+003)d¢
= —100 cos(0-017+ 0-5)+C
CW/P-362.doc 8-16



Solutions to SAQs

SAQ3-7-1

a, f(10x3 —2x? +6x —1)dx

= [5/2x4 - 2/3)63 + 32 —x]f
= (Chhx81 =327 +3%x9-3) =) —%5+3-1)

= 204%,

7T/ 6

b. A 2 cos x dx

[2 sinx] ]

2(% - 0)

= 1

c. J‘143\/_xdx
= 3J;4x”2 dx

= "
= 2x8 —2x1

= 14
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Solutions to SAQs

SAQ3-7-2

SAQ3-7-3

jl4(2x3 ~12x* +12x -3)dx

= [V =4+ 6x* —3x]!

= (X256 — 4x64 + 6x16 — 3x4) — (Vod + 6-3)

—43%,

The negative answer indicates that the area or most of the area lies below the x
axis.

17 y = |cos x|
y
0 I . l I
1 X m
2 .
¢ (4
y = €os X
1+ o

It can be seen that the function y = | cos x | has a discontinuous derivative at x=Tv2.
To integrate it, we have to split it into 2 parts.

V4 /2 V4
J |cosx|dx = J cosxdx + J —cosxdx
0 0 /2
= [sinx]])”?
= (1-0)—(0-1)
= 2
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Solutions to SAQs

SAQ3-7-4

Mean value

! 3x3dx

3-14
Va [Vax'];
s (81 —1)

10
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