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Graph of a
straight line

Consider the graph     y = 2x + 1

We can see that as x increases by 1 unit, y always increases by 2 units.  This is the
same at every point on the line.

Gradient The ratio Increase in
Increase in

y
x

is called the  gradient  or  slope  of the line.

We can liken it to the gradient of a hill.  The greater the gradient, the steeper the
hill.

In this case the gradient  = 2,  which is the coefficient of x.

It is clear that the gradient of a straight line is the same anywhere on the line and is
always given by the coefficient of  x,  since the coefficient of  x  determines how
many units  y  increases for each unit increase in  x.

To measure the gradient of a straight line we can take this ratio anywhere along the
line, for example if we measure the changes in y and x along the whole length as
shown in the diagram, it can be seen that:

total increase in y  =  18 units
total increase in x  =    9 units

∴   gradient  =  18/9  =  2.
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In practice, if we wish to measure the gradient of a line, measuring over the
longest possible section gives the most accurate result.

The equation y = 2x + 1 is called a linear equation since its graph is a straight line.

Intercept If we let x = 0, we get  y = 1.  Therefore the line must intercept the y axis (which is
the line x = 0) at the point where y = 1.

Instead of writing �an increase in y� we write, for short,  ∆y  or  δy.
This is read as �delta Y�.  Similarly an increase in x is written as ∆x.

Hence, the gradient of a straight line at any point is  
x
y

∆
∆

General form
of the equation
of a straight
line

The equation of a straight line is of the form:

y = mx + c
m, the coefficient of x, is the gradient, since y increases proportionately by this
amount with respect to x.
If we let x = 0, we get y = c.  Therefore c must be the intercept on the y axis.
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Negative slope If  ∆y/∆x  is negative this means that y is changing in a negative direction as x
increases in the positive direction.
Consider the graph y = �3x + 2.  As x increases by 1, y changes by �3.
Therefore  ∆y/∆x  is negative and equal to �3.
The intercept on the y axis is +2 as shown on the diagram below.

SAQ3-1-1 Write down (a) the gradient (b) the intercept on the y axis of the
following straight lines.

Equation Gradient Intercept
y = 5x + 1

y = �2x + 4

Y = �1·5x � 2

y = x � 3

y = 4
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Plotting
straight lines There are 2 methods of drawing straight lines from an equation.

Method 1.  Given a line y = mc + c, plot the intercept c on the y axis.  from this
point move along a distance x squares and then up or down a distance of mx
squares.

Method 2.  Substitute values of x into the equation and calculate corresponding
values of y.  A straight line is determined uniquely by 2 points, but to draw it
accurately it is better to plot 3 or more points to align your ruler correctly.

Example
Plot the graph  y = 0·5x � 2 for values of x between 8 and 8.

Substituting x = �8,  x = 0,  and x = 8, we get the corresponding value of y = �6,
y =  �2, y = 2.

Plotting the 3 points (�8, �6), (0, �2), (8, 2) and joining them, we obtain the line.

Measuring the slope, ∆y/∆x  we note that it is 0·5 as expected.
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SAQ3-1-2
Plot the following lines on the same axes below.

Measure the slope of each line and check that it is equal to the coefficient of x.

a. y = 2x � 1

b. y = �2x + 2

c. y = 3x

d. y = �8
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Equation of a
line trough two
points

Given the coordinates of 2 points, we can find the equation of the line through
them.

Coordinates are conventionally written with the x coordinate first, e.g. the point
(3, �2) means the point whose coordinates are x = 3,  y = �2.

Consider the line, y = mx + c  through the 2 points (x1, y1) and (x1, y2)

m  =  
12

12

xx
yy

x
y

−
−

=
∆
∆

Having found the gradient m, the intercept c may be found by substituting either
coordinate pair into the equation.

Find the equation of the line through the points (�2, 1) and (6, 13).

m  =  51
8

12
26
113

12

12 ⋅==
−−
−=

−
−

xx
yy

∴   y = 1·5x + c

Substituting x = �2, y = 1  gives  1 = 1·5 × �2 + c
∴  c = 4
Hence the equation of the line is y = 1·5x + 4
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SAQ3-1-3 Find the equations of the straight lines through the following sets of points:

a. (1, 6) and (3, 20)

b. (�5, �2) and (4, 25)

c. (�2, 15) and (3, 5)

d. (1, 20) and (5, 4)

e. (�2, �4) and (6, 12)
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Equations of
straight lines in
other forms

It is clear that the equation of a line could also be written in terms of x.

For example, the equation y � 0·5x + 3 could equally well be written as

x = 2y � 6

There are occasions where it may be more convenient to express the equation in
this way.

Another form of the equation is the implicit form ie   x � 2y + 6 = 0

A straight line which is
parallel to the y axis cannot
be written in the form
y   = mx+ c,  since the
gradient is infinite, but can
only be written in terms of
x.   For example, the line
x = 2.

The y axis is the line x = 0.

On some graphs, instead of labelling the axes x→ and y↑ , the y axis is labelled as
the line x = 0 and the x axis as the line y = 0.

Gradient of a
curve

The gradient of a curve is not the same at every point, so how do we define it?

The gradient of a curve at some point is defined as the gradient of the tangent to
the curve at that point.  A tangent is a line which touches a curve at one point only.

The gradient ∆y/∆x
varies with x and
therefore must be a
function of x.

In practice, it is very
difficult to draw a
tangent to a curve.
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SAQ3-1-4 On the graph of y = x2, ( see next page) draw the tangents to the curve at

a. x = 1

b. x = 0·5

c. x = 2

Measure as accurately as possible the gradient of the tangents at these points.
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SAQ3-1-5 On the graph of sin x below, draw tangents and measure as accurately as possible
the gradient at the points

a. x = 0

b. x = π

c. x = 2π

Note that the same scale has been used on both x and y axes.

If different scales are used on the axes, which is often the case, the gradient
measurement must be scaled accordingly.

                                                  Graph of y = sin x .   Note :  x is in radians.

What is the gradient at the points where x = π/2 and x = 3π/2 ?

1

0

1

0
sin x( )

π
2

3 π
2

⋅

x   2π
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Differentia�
tion

Differential calculus allows us to find the rate of change of one variable with
respect to another.  We shall commonly use the letters y and x to denote variables
but other letters are often used, particularly in practical problems.

Function
notation

If y is a function of x this means that y varies with x according to some formula.  y
is called the dependent variable and x is called the independent variable.

We write y = f(x) meaning �y is a function of x�.  For example y = x2, y = sin x,
y = ex.  These are all functions of the variable x.  Alternatively, we may write f(x) =
x2  instead of  y = x2.

Similarly, in electrical problems we may write i = f(t), where i is current and t is
time.  This implies that current is varying with time according to some
relationship.  i is called the instantaneous value of current since it is the value of
current at some instant, t seconds.

f(a), where a is some number, means the function evaluated at x = a.
For example: if f(x) = x2,  then f(3) = 9

if f(x) = sin x, then f(π/2) = 1

Rate of change A graph is a pictorial representation of a function.  The type of graph which we
have used in this section plots y against x on axes at right�angles.  This is called a
Cartesian graph.  Other types of graphs such as polar plots have specific
applications.

The rate of change of y as x varies, is represented pictorially by the gradient of the
graph.  We have seen that the gradient of a straight line is a constant.
If y = mx + c then y varies at the constant rate, m.

If f(x) is not a linear function, i.e. its graph is not a straight line, then the rate of
change of y is not constant but varies with x.  Therefore, the rate of change must
itself be a function of x.  This function is called the derivative of f(x).  The process
of finding the derivative is called differentiation.

In SAQ4-1-4 you were asked to measure the gradient of the curve y = x2 at the
points where x = 1, 0·5, and 2.  If you had measured accurately (which is very
difficult) you would have obtained the results 2, 1, and 4, respectively.  This seems
to imply that the gradient of the curve y = x2 is equal to 2x.  That is in fact true, and
the gradient of the curve at every point is 2x.

Therefore, the derivative of x2 is equal to 2x.  We shall prove this on a subsequent
page.
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Differenti�
ation from
first
principles

You have seen the difficulty of drawing tangents accurately and measuring their
gradient.  There is a similar difficulty in finding the gradient mathematically, and
to do so we have to introduce the concept of a limit.

Consider the graph of y = x2 as shown in the diagram below (not to scale).

Suppose we wish to find the rage of change (gradient) at the point A;
(x = 3, y = 9).   We know that the answer should be 2 × 3 = 6.

The straight line, AB
which cuts the curve,
(called a chord), has a
gradient :

∆y/∆x =

34
916

−
− =  7

If we move the point B nearer to point A, the gradient of the chord becomes nearer
to the gradient of the tangent.  So, let us keep halving ∆x and see what happens.

∆∆∆∆x ∆∆∆∆y ∆∆∆∆y / ∆∆∆∆x
1 42 � 32 7

0·5 3·52 � 9 =  3·23.5 6·5

0·25 3·252 � 9 =  1·5625 6·25

0·125 3·1252 � 9 =  0·765625 6·125

0·0625 3·06252 � 9 =  0·37890625 6·062

∆y/∆x seems to be getting closer to 6.
Now make ∆x very small, say  �0·0001

0·0001 3·00012 � 9 =  0·00060001 6·0001

Limits

∆y/∆x is even closer to 6.  As ∆x approaches zero, ∆y/∆x appears to be approaching 6.
The problem is; how do we find the exact value of ∆y/∆x at the point where x = 3?
If we let ∆x equal zero the chord AB becomes the tangent at A, but ∆y and ∆x both
become zero and we cannot evaluate 0 ÷ 0.  As stated in section 1 Algebra,
division by zero is not defined in the arithmetic of real numbers (nor complex
numbers).  As ∆y and ∆x become infinitesimally small, the ratio ∆y/∆x  appears to
be approaching a limit, in this case 6, although if we let ∆y = 0, ∆x = 0, the

 B

 A
 ∆y

 ∆x

 Graph of  y = x2

 y

 x
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0 3
0

5

10

15

20

25

ratio cannot be evaluated.  Expressions of the form 0 ÷ 0 are called
indeterminate since they cannot be evaluated.  However we can find the
limit of y

x
∆

∆   as ∆x approaches zero.

This is written as
Lim

0x∆ →
y
x

∆
∆

and is read as �the limit as ∆x approaches zero, of  y
x

∆
∆ �

In calculus this limit is called  d
d

y
x

How do we show, in the above example that d
d

y
x

= 6 at  x = 3 ?

At x = 3 we take an
increment ∆x.

Then ∆y =  (3 + ∆x)2 � 9

x
x

x
y

∆
−∆+=

∆
∆∴ 9)3( 2

=  
x

xx
∆

−∆+∆+ 9)(69 2

=  
x

xx
∆

∆+∆ 2)(6

=  6 + ∆x

Now if we let ∆x approach zero we can see that in the limit, ∆y/∆x bec

6.  Hence d
d

y
x

 = 6  at x = 3

This is an example of finding a limit.  Other kinds of limits will be co
later in your course.

We can find a general formula for  d
d

y
x

  in terms of x by a similar me

B

 A
 

d
d
y
x

  9+∆y
  
om

ns

tho

 

  3+
∆y
∆x
y↑
∆x
x→
es equal to

idered

d.
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Consider some general point A, coordinates (x,y) on the curve y = x2.
Take an increment ∆x in x, giving a corresponding increment ∆y in y to point B on
the curve whose coordinates are (x + ∆x, y + ∆y)

        x                   x+∆x

   
 y+∆y

     Graph of
        y = x2

  y

Since point B is on the curve y = x2, then (y + ∆y) = (x + ∆x)2.

x
y

∆
∆∴ =

x
xxx

∆
−∆+ 22)(

=
x

xxxxx
∆

−∆+∆+ 222 )(2

=
x

xxx
∆

∆+∆ 2)(2

= 2x + ∆x

Now as ∆x approaches zero, the chord AB approaches the tangent at A and we can
see that in the limit  approaches 2x.

Hence if y = x2, d
d

y
x

  =  2x.

The function 2x is called the derivative of the function x2.

Other terms used for derivative are differential coefficient and derived function.
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Function
notation If y = f(x) then d

d
y
x

 is written as f ′(x).

Definition of
derivative

We can now write a definition for the derivative of f(x) in terms of limits:

f ′(x) =
Lim

0x∆ →
f( ) f( )x x x

x
+ ∆ −

∆

Instead of writing dy/dx we can also write d/dx f(x), treating d/dx as an operator acting
upon the function.

eg d/dx(x2)  =  2x

The value of dy/dx at x = a is written f ′(a).

For example, if f(x) = x2 then f ′(3) = 6.

The above method of finding the derivative by taking limits is known as
"differentiating by first principles".  Later we shall find short�cut methods for
differentiating most functions.
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SAQ3-2-1 a. If f(x) = x3, using the same method as above, find f ′(x)

{ Note the binomial expansion:  (a + b)3 ≡ a3 + 3a2b + 3ab2 + b3 }

b. Write down the values of:

(i) f(2) (ii) f ′(2)
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Derivative of
xn

To save having to repeat a similar process every time we have to differentiate a
function such as x3, x4, etc we can derive a general formula for the derivative of xn,
where n is a constant.

This proof is included for interest only and uses the binomial theorem which will
not be taught until later on your course.

Let f(x) = xn

Then from our definition of the derivative

 f ′(x)  =
Lim

0x∆ →
( )n nx x x

x
+ ∆ −

∆

Now, (x + ∆x)n  can be written as xn(1 + ∆x/x)n

By the binomial theorem, since ∆x is small, then for any value of n:

2 3( 1) ( 1) 2)(1 / ) {1 ( / ) ( / ) ( / )
2 6

n x n n x x x
x x x x

n m n m nx x n∆ ∆ ∆ ∆− − −+ = + + + + ••

. . . + higher powers of ∆x}

=  ••+−−+−++ −− 331 )(
6

)2)(1(
2

)1( xxnnnnnxnxx nnn ∆∆

. . . + higher powers of ∆x

Subtracting xn and dividing by ∆x we get:

Lim
0x∆ →

( )n nx x x
x

+ ∆ −
∆

=
Lim

0x∆ →
( ) +−−+

�
�
� −+ −−− 2321

6
)2)(1(

2
)1( xxnnnxxnnnx nnn ∆∆ . . .

. . . + terms containing ∆x }

We can see that as ∆x approaches zero, all the terms containing ∆x disappear so
that it approaches the limit of nxn�1.

Hence f ′(x) = nxn�1

This is true for any constant n; positive, negative, integer, or fraction.



Section 3:  Calculus � Elementary differentiation

CW/P�362.doc 2�8

The derivative of xn is very important since many common functions such as
polynomials contain expressions of this kind.  This result should be committed to
memory.  It is restated below.

if  y = xn

then
d
d

y
x     =    nxn�1

Examples a. y = x3, dy/dx =  3 (x3�1) =  3x2

b. y = x4, dy/dx =  4 (x4�1) =  4x3

c. y = x, dy/dx =  1(x1�1) = 1(x0) =  1

d. y = x�1, dy/dx =  �1 (x�1�1) =  �x�2

e. y = x½ , dy/dx =  ½ (x½�1) =  ½x�½

Note that n can be any constant;  positive, negative or fractional.

When we write dy/dx  we are differentiating with respect to x, i.e. x is the
independent variable and we are finding the rate of change with y with respect to
x.

Derivative of a
constant

The graph of y = C  where C is a constant, is a line parallel to the x axis which has
zero gradient.  Therefore, if y is constant,  dy/dx  = 0.

This is consistent with the above rule, since we can regard a constant C as being
Cx0,  since x0 = 1.

Therefore d/dx (x0)  =  0(x0�1)  =  0
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SAQ3-2-2 Write down dy/dx  for the functions of x in the table.

y dy/dx

a. x5

b. x�2

c. x�½

d. x3/2

e. 4

Differentiation
as a linear
operation

Differentiation is a linear operation.
This means that the derivative of the sum of 2 functions is equal to the sum of the
derivatives.  ie

If  f(x)  =  f1(x) + f2(x)

then  f´(x)  =  f ′ (x) + f ′ (x)

ALSO  if k is a consta

This means that when
is differentiate them
outside the derivative

Examples If y = x3 + x2  th

i.e. simply differentia

If y = 5x2  then 

i.e. the constant simp

Examples y  =  2x3 � 4x2 +

y  =  2x½ + 2x�1

1 2
nt then

 we ha
 separa
.

en dy/dx 

te term 

dy/dx  =  

ly multi

 3x + 7

,  dy/dx  =
2�9

 d/dx k f(x)  = k dy/dx  f(x)

ve several functions added together, all we have to do
tely.  Also, a multiplicative constant may be taken

 =  3x2 + 2x

by term.

5(2x)  =  10x

plies the derivative.

, dy/dx  =  6x2 � 8x + 3

  x�½ � 2x�2
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SAQ3-2-3 Differentiate the following functions with respect to x.
(If necessary, refer to the table of derivatives on page 2�18)

a. y = 2x2 � x + 2

b. y = 4x5 + 2x3 � 5x2 � 3x � 7

c. y = 1/x3

d. y = √x

e. y = 2√x � √(x3)

f. y = (x � 3)2

g. y = x2 � 1/x2

h. y = 1n(x2)
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SAQ3-2-4 Find the gradient of the curve y = 2x3 � 9x2 + 10  at the points

a. (2, �10) b. (0, 10) c. (3, �17) d. (�1, �1)

and mark these points on the graph below.
2�11

2 1 0 1 2 3 4 5 6
40

30

20

10

0

10

20

30

40

y x( )

x

    y ↑

0

 x→
 y = 2x3 � 9x2 +1



Section 3:  Calculus � Elementary differentiation

CW/P�362.doc 2�12

Further
examples of
limits

Try the following exercise.
Using a scientific calculator, select the "radian" mode for angles.  Enter a small
angle and calculate its sine.  Then divide sin x by x, as shown in the table below.

Angle x (radians) sin x (sin x)/x
0·5 0·4794 0·9589
0·1 0·09983 0·9983
0·01 0·00999983 0·999983
0·001 0·00099999983 0·99999983
0·0001 0·000099999999 0·99999999
0·00001 0·000100000 1·000000000

We can see that as the angle gets smaller, the value of sin x
x

 gets closer to 1.

Eventually, the calculator runs out of available digits and it shows the value as 1,
to the limit of its accuracy.

However if we put x = 0 we obtain sin x
x

 =  0 ÷ 0, which cannot be evaluated.

It can be shown that sin x
x

 approaches the value 1, as x approaches zero.

This is a very important limit which should be remembered.  You will encounter it
later in signal processing and in antenna theory.  It is written as:

Lim sin 1
0

x
x x

=
→

The angle x is, of course, in radians.

A proof of this limit is given on the next page.  This proof is given for interest only
and need not be memorised.  The result, however, is very important.

Limits will be discussed further on your course at the Royal School of Signals.
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Proof that
Lim sin 1

0
x

x x
=

→

OAB is a sector of a circle with an angle θ (radians) at the centre.
BC is a tangent to the circle at B.  A tangent to a circle makes a right angle with
the radius, in this case with the radius OB.
The radius OA is projected to meet the tangent at C.

Let the radius of the circle = r.

From elementary trigonometry:
The area of the triangle OAB =  ½r2sin θ
The area of the sector OAB =  ½r2 θ (θ measured in radians)
The area of the triangle OCB =  ½r2tan θ

Hence, it is clear that ½r2sin θ ≤ ½r2 θ ≤ ½r2tan θ

∴ sin θ  ≤   θ≤    tan θ (divided by ½r2 which must be positive).

1  ≤   1
sin cos

θ
θ θ

≤  (divided by sin θ, which is positive for small θ)

Now let θ approach zero so that the 3 areas converge together and cos θ
approaches cos(0) = 1.
As θ→0:

1  ≤   1
sin

≤
θ

θ

∴   
θ

θ
sin

  must approach the value 1.
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Derivative of
trigonometric
functions

We shall use the above limit to find the derivative of sin x.
Firstly, let us examine the graph of y = sin x.

If we measure accurately the gradient of this curve at various points w
following results.  Note that the x axis is plotted in radians, not degrees.

x gradient (dy/dx)
0 1
π/4 0·707
π/2 0
3π/4 �0·707
π �1
5π/4 �0·707
3π/2 0
7π/4 0·707
2π 1

If we plot the graph of this gradient we obtain what must be a periodic fun
looks remarkably like a cosine curve.  This is no coincidence since the d
of sin x is, in fact, cos x.
A proof of this is given below.  Later in this section there will be another
a different method.

1

1

0

π

⋅

x

    y

    3π 
    2

    π 
    2

1

1

 0   y

π

 x
2 π  2π 
e get the

ction.  It
erivative

 proof by

2 π⋅
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Derivative of
sin x

The following proof is for interest only and need not be learned.

Let f(x) = sin x

Then by definition f ′ ( x)   =
Lim sin( ) sin

0
x x x

x x
+ ∆ −

∆ → ∆
Applying the trigonometric identity:

sin A � sin B  ≡  2 cos ½(A + B)  sin ½(A � B)

we obtain
sin(x + ∆x) � sin x  ≡  2 cos(x + ∆x/2)  sin(∆x/2)

∴ Lim sin( ) sin
0

x x x
x x

+ ∆ −
∆ → ∆

=
2cos sinLim 2 2

0

x xx

x x

∆ ∆� � � �+� � � �
� � � �

∆ → ∆

=
sinLim 2cos

0 2
2

x
xx xx

∆� �
� �∆� � � �+� � ∆∆ → � �

Now from the previously proved limit: Lim sin 1
0

θ
θ θ

=
→

, where θ is in radians.

∴ sin
2

2

x

x

∆� �
� �
� �
∆

approaches 1 as ∆x approaches zero.

Also, the ∆x/2 in the bracket disappears and so

f´(x)  = cos x

Hence, d/dx  sin x  =  cos x

Note that x is always in radians.

Derivative of
cos x

By a similar method it can be proved that

d/dx  cos x  =  �sin x
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Derivatives of
other functions

An important derivative is that of ex.
ex is the function whose rate of change is equal to the value of the function at any
instant, ie

Derivative of
ex

d/dx  ex  = ex

Derivative of
ln x

Another important derivative is that of the natural logarithm, ln x.

d/dx  ln x  = 1/x

Table of
derivatives

A table of some common derivatives is given below.

y

xn nxn�1

ex ex

ln x

sin x cos x

cos x �sin x

tan x sec2x

cot x �cosec2x

sec x sec x tan x

cosec x �cosec x cot x

sinh x cosh x

cosh x sinh x

tanh x sech2x

1
x

dy
dx
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Diferentiation
of a product

We have seen that the derivative of a sum is equal to the sum of the derivatives.
However, this does not work for products, ie the derivative of a product is not the
product of the derivatives.

The product rule is as follows:

If y = uv
where u, v are functions of x

d d d
d d d

y v uu v
x x x

= +

Examples 1. y = x2 sin x

Let u = x2 then du/dx  =  2x

Let v = sin x then dv/dx  =  cos x

dy/dx  =  x2 cos x  +  2x sin x

2. y = x ex

Let  u = x then du/dx  =  1

Let v = ex then dv/dx  =  ex

dy/dx  =  x ex  +  ex

With a bit of practice, you should be able to write down the answers directly
without the intermediate steps.

3. y = ex cos x

Let u = x2 then du/dx  =  2x

Let v = sin x then dv/dx  =  cos x

dy/dx  =  ex cos x  �  ex sin x
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If a product contains more than 2 factors, they must be grouped in pairs and the
product rule applied more than once.

Example y = 2x3 ex cos x

Group 2 of the factors together
Let  u  =  2x3, v  =  (ex cos x)

du/dx  = 6x2, dv/dx  =  ex cos x � ex sin x

∴  dy/dx  =  2x3 ex(cos x � sin x) + 6x2 ex cos x

SAQ3-3-1 Find dy/dx where:

a. y  =  3x2 tan x

b. y  = x ln x � x

c. y  = ex sin x cos x
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Differentiation
of a quotient

The quotient rule is as follows:

If   y  =  
u
v

where u, v are functions of x

2

d d
d d d
d

u vv uy x x
x v

−
=

In this formula, unlike the product formula, it is essential to have the u and v the
correct way round.

Example
1

2
2

3

+
−=

x
xxy

Let u  =  2x3 � x then du/dx  =  6x2 � 1

Let  v  =  x2 + 1 then dv/dx  =  2x

dy/dx = 22

322

)1(
2)2()16)(1(

+
−−−+

x
xxxxx

= 22

24

)1(
172

+
−+

x
xx
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Example Differentiate with respect to x

sin
2

x x
x +

This contains both a product and a quotient.

Let u  =  x sin x then du/dx  =  x cos x + sin x,  by the product rule.

Let v  =  x + 2 then dv/dx  = 1

dy/dx = ( ) ( )
( )2

2 cos sin sin
2

x x x x x x
x

+ + −
+

= ( )
( )2

2 cos 2sin
2

x x x x
x

+ +
+

SAQ3-3-2 Differentiate with respect to x, the following functions.

a.
12

323

+
+−

x
xx

b.
53

2

+x
x

c.
2

2

5 e
1

xx
x+
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Chain rule So far we have only considered simple functions of x such as polynomials and
single trigonometric functions.

A function of a function is an expression of the type F{f(x)} where f(x) is a
function of x and F{f(x)} is a function of f(x).
For example.

12 += xy

x2 + 1 is a function of x and 12 +x   is a function of x2 + 1.

y  =  e2x

2x is a function of x and  e2x   is a function of 2x.

These functions cannot be differentiated by any of the rules we have used so far.
To differentiate a function of a function we use the chain rule which is:

If y is a function of z where z is a function of x, then

d d d
d d d

y y z
x z x

=

This rule is very easy to remember since it appears that we are "cancelling" the dz.
This is not quite true, since a derivative is not a ratio but the limit of a ratio.  A
rigorous proof of the above rule is beyond the scope of this course.

Example 12 += xy

Let z  =  x2 + 1, y  =  z½

dz/dx =  2x, dy/dz = ½ z�½ =  ½(x2 + 1)�½

dy/dx = dy/dz  dz/dx = ½(x2 + 1)�½ (2x)

= x(x2 + 1)�½

=
12 +x

x
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Example y  = sin2 x

Let z  =  sin x, y  =  z2

dz/dx =  cos x, dy/dz = 2z   =  2 sin x

dy/dx = dy/dz = 2 sin x cos x

Example y  =  ln(x2 + 1)

Let z  =  x2 + 1, y  =  ln z

dz/dx =  2x, dy/dz = 1/z   =  1/(x2 + 1)

dy/dx = dy/dz   dz/dx   =
1

2
2 +x

x

Derivative of
eax

A very important derivative is that of  eax  where a is a constant.

y  =  eax

Let z  = ax, y  =  ez

dz/dx =  a, dy/dz =  ez   =   eax

dy/dx = dy/dz   dz/dx =  aeax

e.g. d/dx (e2x)  =  2e2x

Deriviative of
sin ωt

Another important derivative is that of sin ax or sin ωt

y  =  sin ωt

Let z  =  ωt, y  =  sin z

dz/dt =  ω, dy/dz =  cos z  =  cos ωt

dy/dt = dy/dz   dz/dt =  ω cos ωt

Which shows that the rate of change of a sine wave is directly proportional to its
frequency.
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Example The derivative of the sine or exponential of any linear function of x is similar.

y  =  eax + b

Let z  =  ax+b, y  =  ez

dz/dx =  a dy/dz = ez  =  eax+b

dy/dx =     dy/dz
dz/dx =  aeax+b

Example y  =  sin(ωt + φ)

Let z  = ωt + φ y = sin z

dz/dx =  ω dy/dz = cos z  =  cos(ωt + φ)

dy/dx =     dy/dz
dz/dx =  ω cos(ωt + φ)

After some practice you should be able to write down the answers without having
to go through the intermediate substitutions.

SAQ3-4-1 Find the derivatives, with respect to x, of the following functions:

a. xx 42 2 +

b. tan2 x

c. ln(x3 + 3x)

d. e2x + 1

e. ln(sec x + tan x)

f. (3x + 2)12

g. sin(2x + π/6)
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Extension of
chain rule

The chain rule can be extended to more complicated functions of functions of
functions, ie

d d d d
d d d d

y y u v
x u v x

=

Example y  =  √(sin 2x)

v  =  2x, u  =  sin v, y  =  u½

dv/dx =  2, du/dv = cos v  =  cos 2x, dy/du = ½u�½ =  ½(sin v)�½

=  ½(sin 2x)�½

dy/dx = dy/du
du/dv

dv/dx

= 2 × cos 2x × ½(sin 2x)�½

=
( )

cos 2
sin 2

x
x

SAQ3-4-2 Find dy/dx where  y  =  ln(cos 4x)
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Sometimes a problem has to be split into separate parts

Example y  =  )1ln( 2 ++ xx

Let z  =  12 ++ xx y = ln z

dy/dz =  1/z  =  )1/(1 2 ++ xx

Now, 12 +x   is itself a function of a function

Let u  =  12 +x , v  =  x2 + 1, u  =  v½

du/dx = du/dv
dv/dx = ½v�½(2x) =  x(x2 + 1)�½

Hence, dz/dx   = 1 + x(x2 + 1)�½

  =
1

1
2 +

+
x

x

dy/dx   = dy/dz
dz/dx

  =
1
1

1

2

2

++
+

+

xx
x

x

This may be simplified by various methods, eg

1
1

1

2

2

++
+

+

xx
x

x

  =
{ }

1

1
1

1

2

2

2

++

++
+

xx

xx
x

  =
1

1
2 +x
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Derivative of
sin x

We can use the function of a function rule to find the derivatives of sine and
cosine.

You will recall from Section 2:  Complex numbers  that

j je esin
2 j

x x

x
−−=

SAQ3-4-3 cos x  =  ½(ejx + e�jx)

By differentiating this expression, show that  d/dx (cos x)  =  �sin x
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Second
derivative

The derivative of y with respect to x is the rate of change of y with respect to x.  In
mechanics, ds/dt is the rate of change of distance, s, with respect to time, t.  This
is called velocity, v.  The rate of change of velocity with respect to time is called
acceleration, a.  Hence,  a = dv/dt.

∴ a  = d/dt (ds/dt)

This is the second derivative of s with respect to t and is written d²s/dt² .

Similarly, 
d d

d d
y

x x
� �
� �
� �

 is written as 
2

2

d
d

y
x .

It is said as "Dee two y, dee x squared" but note that it is not actually x squared and
is not the derivative with respect to x2.

dy/dx is sometimes called the first derivative.

Examples y  =  x3, dy/dx =  3x2. d²y/dx²   =   6x

y  =  sin ωt, dy/dt =  ω cos ωt, d²y/dx²   =   �ω2 sin ωt

Third
derivative

The derivative of the second derivative is called the third derivative, and is written
as d³y/dx³. Similarly the derivative of the third derivative is called the fourth
derivative, etc.

In function notation the first derivative is written f ′(x).  The higher derivatives are
written in a similar manner:

Second derivative f ′′(x)

Third derivative f ′′′(x)

Fourth derivative f ′′′′(x)

Fifth derivative f v(x)

Sixth derivative f vi(x)
. .
. .
nth derivative f (n)(x)
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SAQ3-5-1 If y  =  f(x)   = x4 + 4x3 + 2x2 � 2x + 1, find

a. dy/dx

b. d²y/dx²

c. d³y/dx³

d. f ′(2)

e. f ′′(1)

f. f ′′′(�1)
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SAQ3-5-2 The distance s metres of a body, moving in a straight line, from a fixed point, at
time t seconds, is given by

s  =  5t4  �  14t3  +  8t2

If velocity  =  d
d

s
t , acceleration = 

2
2

d
d

s
t

Find:

a. The 2 times after t = 0 when the body is again passing through its point of
origin, and its velocity and acceleration at these 2 instants.

b. The times at which the velocity is zero, and its acceleration at these instants.
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Integration Integration has many important applications in electrical theory and signal
processing.  Originally, integration was derived as a method of finding areas but
was then proved to have a relationship to differentiation.  For most purposes,
integration may be regarded as the reverse process to differentiation.  For all of the
elementary continuous functions which we shall encounter, integration can be
performed in this way.

In the previous chapters, we had to find dy/dx given y.  Suppose we are given dy/dx
and asked to find y.  For example:

dy/dx =  2x,  find y

We know that if you differentiate y = x2, you get dy/dx =  2x, so we could say that
the answer is y = x2.  However if you differentiate y = x2 + 1 you also obtain
dy/dx = 2x.  In fact if you differentiate  y = x2 + C  where C is any constant, you
obtain dy/dx = 2x.

Therefore we write  y  =  x2 + C

For some particular
value of x, all these
curves have the same
gradient, since dy/dx  is
equal to 2x for all of
them.

Therefore, given dy/dx
we cannot determine y
exactly.

This is illustrated in the graph below.

Arbitrary
constant

C is called an arbitrary constant because it can take any value.  We cannot
determine the value of this constant unless we are given additional information.

For example, suppose we are given the additional information that y=2 when x=1.
We have y = x2 + C
Substituting  x=1, y=2 we get  2 = 12 + C
∴ C = 1
Hence y = x2 + 1

2 0 2

5

10

x)

x)

x)

x)

1

x

 x →

 x2�3

 x2
x2+1

 x2+4

 gradients are all equal
for this value of x.
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Symbol for
integration

The symbol for integration is an elongated S.  Thus we write

� 2x dx  =  x2 + C
The dx indicates that we are integrating with respect to x and must not be left out.
This type of integral is called an indefinite integral because it contains an arbitrary
constant.  The arbitrary constant must not be omitted, since, as you will discover in
applications to circuit theory, the arbitrary constant has a particular meaning.

To integrate simple functions we can simply use differentiation in reverse.

We know that d/dx (xn)  =  nxn�1  therefore if we integrate xn the power must
increase by 1.  It is clear that

Integral of xn

� xn dx  =  
1

1

+

+

n
xn

  +  C

We can check this by differentiating back again

�
�
�

�
�
�

+

+

1

1

n
xn

 = 
1

)1( 11

+
+ −+

n
xn n

  =  xn

This integral is true for any value of n, positive, negative, or fractional,
 except for n=�1.

If we put n=�1  we get  x0÷0  =  1÷0.  This cannot be correct.  We know that
d/dx (ln x) = x�1,  hence:

� x�1 dx  =  ln x + C

Note that ln x + C  can also be written as  ln(Kx)

where by the rules of logarithms,  C = ln K (cf Section 1: Algebra)

If C is an arbitrary constant then K must also be an arbitrary constant.  As we do
not know what the constant is, it does not matter what we call it (A, B, C, etc).  In
this text we shall use capital letters to denote arbitrary constants, avoiding letters
such as X, Y which we commonly use for variables.

d
dx
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Table of
standard
integrals

Most of the common integrals can be found simply by looking at our standard
derivatives.  A table of standard integrals is given below.

f(x) � f(x) dx

xn

1

1

+

+

n
xn

   +  C (n ≠ �1)

x
1 ln x + C

ex ex + C

sin x � cos x + C

cos x sin x + C

tan x ln(sec x) + C

sec x ln(sec x + tan x) + C

cot x ln(sin x) + C

cosec x ln(tan ½x) + C

sec2 x tan x + C

sinh x cosh x + C

cosh x sinh x + C

✻✻✻✻   C is an arbitrary constant
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SAQ3-6-1 Integrate the functions in the table below:

f(x) � f(x)dx

x5

√x

1/√x

x�2

x

3
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Integration as a
linear
operation

Since differentiation is a linear operation, integration must be a linear operation
also, ie

If k is a constant then  � k f(x) dx = k � f(x) dx
and

� {f1(x) + f2(x)}dx = � f1(x) dx +  � f2(x) dx

Example � 2 cos x dx = 2 � cos x dx = 2 sin x + C

Example � 12x2dx = 12 � x2 dx = 12(x3/3) + C = 4x3 + C

Example � (x3 + 6x2 + 2x + 4) dx = ¼x4 + 2x3 + x2 + 4x + C

Example � (cos x � sin x) dx = sin x + cos x + C

Example
� �x�3 dx =

2
)( 2

−
− −x + C = ½x�½ + C

= 22
1
x

+ C
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SAQ3-6-2 Determine the following integrals:

a. z (3x5 + 8x3 � 15x2 + x � 1) dx

b. � x
2 dx

c. d
2

x
x�

d. � 3

2
x

dx

e. � (3 cos x + 2 sin x) dx

f. � (x + 1/√x) dx
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More
complicated
integrals

Although it is possible to differentiate the most complicated expressions by using
product, quotient, and chain rules, integration is not quite so easy.  There is no
general product rule and no quotient rule.  Integrating functions of functions is not
always possible and there are various techniques and standard integrals which will
be taught later on your course at the Royal School of Signals.

In this text, we shall only consider integrating expressions which are functions of
linear functions of x.

Exponent of a
linear function

eax b+
�  dx where a, b are constant.

We know that  d/dx eax+b  =  aeax+b

Hence, we deduce by the reverse operation that

eax b+
�  dx = 1/a eax+b  +  C

since, if we differentiate back again, the 1/a cancels the a in the derivative of  eax+b.
Check this yourself by differentiating 1/a eax+b.

Note that this only works for linear functions of x.  For example

2

eax
�  dx cannot be found at all, by this, or any other method.

Examples 2 1e x+
�  dx = ½ e2x+1  + C

4 2e x− +
�  dx = �¼ e�4x+2  + C

/ 2ex
�  dx = 2 ex/2  + C
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Sine and cosine
of linear
functions

( )sin dt t+� ω φ

We know that d/dt cos(ωt + φ) = �ω sin(ωt + φ)

Therefore by the reverse operation we deduce that

( )sin dt t+� ω φ = �1/ω cos(ωt + φ)  +  C

You should check this by differentiating back again.

Example ( )sin 2 / 6 dt tπ+� = �½ cos(2t + π/6)  +  C

Similarly since d/dt sin(ωt + φ) = ω cos(ωt + φ)
we can deduce that

( )cos dt tω φ+� = 1/ω sin(ωt + φ)  +  C

Check this by differentiating back again.

Example ( )cos 0 1 1 5 dt t⋅ − ⋅� = 10 sin(0·1t � 1·5)  +  C
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SAQ3-6-3 Determine the following integrals.

a. � e2x dx

b. � e3x�2 dx

c. � e�x dx

d. � cos(2x + π/3) dx

e. � sin(0·01t + 0·5) dt
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Area under a
curve

Consider the graph of y = f(x) at some arbitrary point x.

Taking a small increment ∆x in x, we obtain an increment in the area between the
curve and the x axis which we shall call ∆A.

We can see that ∆A is greater than the area of the rectangle whose area is f(x) ∆x
and that ∆A is less than the area of the rectangle whose area is f(x+∆x) ∆x.

i.e. f(x) ∆x  ≤  ∆A  ≤  f(x+∆x) ∆x

∴ f(x)  ≤  
x
A

∆
∆   ≤  f(x+∆x)

Now suppose we let ∆x approach zero.  ∆A/∆x  approaches  dA/dx  and f(x+∆x)
approaches f(x).  Hence, in the limit

d ( )
d

A f x
x

=

ie  the area is changing at a rate which at any point is equal to f(x).

Therefore, the area A varies with x in accordance with some function

A = f( ) dx x�

Let us call this function F(x) + C  which is the indefinite integral of f(x) with
respect to x.
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The intregral contains the unknown constant  C  because the only information we
have initially is the rate of change of area f(x) and we have an unspecified starting
point from which to calculate the area.

We can assume that there is some unspecified point x=x0 on the x axis, up to which
the area is zero (this point may be �∞).  Suppose we wish to find the area between
2 values of x;  x=x1  and x=x2.

The area under the curve between x=x0 and the ordinate at x=x1 is equal to
F(x1) + C .

The area under the curve between x=x0 and the ordinate at x=x2 is equal to
F(x2) + C .

where

F(x) + C  =  � f(x)dx

Hence, the area bounded by the curve, the x axis and the ordinates at x=x1 and
x=x2 is given by

{ F(x2) + C} � { F(x1) + C}

= F(x2)  � F(x1)

This is written as

2

1
f( )d

x

x
x x�
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Example

Consider the function (x) = 3x2.  We wish to find the area under the curve between
the x axis and the 2 ordinates x=1  and  x=2,  as shown in the shaded area of the
diagram.

We have shown that dA/dx  =  f(x)  =  3x2

∴ A  =  23 dx x� = x3 + C

The graph of A against x is shown on the right.  We do not know the value of C
but this does not matter because the required area is the difference between 23 + C
and 13 + C which is equal to 7.

We write this as 

2 2

1
3x dx�

= [ ] 2
1

3x     = 23 � 13 = 7

The 2 numbers on the integral sign are called boundary values.  The one at the top
is called the upper limit of integration and the one at the bottom is called the lower
limit of integration.

The square brackets mean "evaluate the function in brackets at the 2 limits, and
subtract the value at the lower limit from the value at the upper limit."

Note that we don't usually write + C in the bracket because C has cancelled out, as
it has the same unknown value at both points.

 A = x3 + C
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Definite
integral

This type of integral is called a definite integral because the arbitrary constant
disappears.

Examples 1.
3 3 2

2
(8 4 2)x x x+ − +� dx

=  [ ] 3
2

234 223/2 xxxx +−+ =   (162 + 9 � 18 + 6) � (32 + 8/3 � 8 + 4)

=  128 1/3

2. �
π

0
dsin xx = [ ] 0

cos x π− = �cos π � (�cos 0)

= �(�1) � (�1) = 2

(Always remember: angles are radians in calculus)

3.
0

e dx x
∞ −
� =

0
e x ∞−� �−� � = 0 � (�1) = 1

4. �
2

1

d
x
x

= [ ] 2
1ln x

= ln 2 � ln 1

= ln 2 � 0

= ln 2 ≅ 0·693
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SAQ3-7-1 Evaluate the following definite integrals

a. � −+−
3

1

23 d)16210( xxxx

b. �
6/

0
dcos2

π
xx

c. �
4

1
d3 xx
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Integral as a
sum

Integration was originally derived as the sum of an infinite number of very small
quantities.

If we divide the area between x=a and x=b into a number of narrow strips of width
∆x, at some particular value of x, the strip is approximately a rectangle of height
f(x) and width ∆x.  Therefore the area ∆A of the strip is approximately given by

∆A  ≅   f(x) ∆x

If we make the strip narrower, the error is assuming a rectangle becomes less.  The
total area is approximately given by

A  ≅   �
=

=

bx

ax
xx ∆)(f

The letter Σ is a short�hand way of writring "the sum of all such terms", ie

f(x1) ∆x + f(x2) ∆x + f(x3) ∆x + f(x4) ∆x + · · ·
from x=a  to x=b.

If we let ∆x approach zero, so that we are summing an infinite number of
infinitesimally small rectangles, then this sum approaches the area under the curve
which is the integral of f(x) from x=a to x=b.  Therefore

Lim
f ( )∆

0

x b

x a
x x

x

=

=∆ → � = �
b

a
xx d)(f

The symbol used for integration which is a Gothic letter S, replaces the Greek
letter S or Σ which stands for "sum".
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Negative area When we integrate, we are summing up the products of ∆x, which is a positive
increment in x, with values of y.  If the values of y are negative then the product is
negative.  Therefore any area which lies below the x axis has a negative sign.

Find the area
between the curve
y = x2 � 2x and the
x axis, between
x=0 and x=2.

� −
2

0

2 d)2( xxx = [x3/3 � x2] 2
0    = (7/3 � 4) �0

= = �11/3

The negative sign merely indicates that the area lies below the x ax

Units of an
integral

Note that it is not necessary to write "square units" after the answer
integral.  The units of an integral are the product of the units on the
and unless the axes are labelled with units we cannot give specific 
integral.  However, in practical problems when units are given, it is
state the units of an integral (or of a derivative).

Example y axis:  velocity (m/s); x axis:  time (seconds)

The units of  dy/dx  will be m/s ÷ s =  m/s2,  ie acceleration.

The units of  � y dx  will be m/s × s  =  m,  ie distance.
y= x2 � 2x
is.

 to a definite
 x and y axes
units to the
 essential to
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If an integral has both negative and positive parts to it, then they will add to give a
smaller sum.  For example consider a sine function integrated over one cycle.

The area consists
of a positive half
and an equal
negative half.

Therefore, the
integral of this
function between
x=0 and x=2π must
be zero.

We can confirm
this by integrating.

�
π2

0
dsin xx = [�cos x] π2

0

= �1 � (�1) = 0

Although the scalar magnitude of the "area" is not zero, the value of the integral is
zero.  Physical interpretations of negative integrals will be encountered later in
your study of power in ac circuits.

It should be appreciated that "area" is merely a graphical interpretation of an
integral, just as gradient is a graphical interpretation of a derivative.  If the x and y
axes were both calibrated in millimetres then the integral would of course be an
actual area in mm2.  In an electrical problem, an integral would mean some other
physical quantity.  For example, if we had current as a function of time, then

� i dt would represent charge, and the unit would be amperes × seconds =
coulombs.

0 2 4 6
1

0

1

0
sin x( )

π 2 π⋅

x
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Partitioning of
an integral

Consider the function
y = f(x) as shown in the
diagram.  It is evident
that the area under the
curve between x=1 and
x=6 is the same as the
sum of the 2 areas from
x=1  to  x=3 and from
x=3  to  x=6

ie �
6

1
d)(f xx = �

3

1
d)(f xx + �

6

3
d)(f xx

In general, we can say that if f(x) is integrable over the interval x=a to x=b, and
point c lies in that interval, then

�
b

a
xx d)(f = �

c

a
xx d)(f + �

b

c
xx d)(f

It is sometimes necessary to partition a function into 2 or more parts in order to
find the integral.  This is because in some cases we cannot find a single expression
for the indefinite integral over the whole interval.

There are many functions for which it is not actually possible to find an indefinite
integral at all, although the definite integral exists and can be found by other
means.

The following example, which is important in electrical theory, illustrates where
partitioning is necessary.
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Example

For example, consider a rectified sine wave of peak value A, represented by the
solid line on the graph above.

This can be written as y = | A sin x |
(The vertical lines mean the modulus or absolute value.)

To integrate this we have to split it into the sum of 2 functions.  ie

y =   A sin x for 0 < x <π
  �A sin x for π < x < 2π

Between x=0 and x=π, the function has the equation y = A sin x.
Between x=π and x=2π the sine wave (shown dotted) has been inverted and
therefore has the equation y = �A sin x over this interval.

Hence, �
π2

0
d|sin| xxA = �� −+

π

π

π 2

0
dsindsin xxAxxA

= A[�cos x] π
0 + A[cos x] π

π
2

= A{�(�1) � (�1)} + A{1 � (�1)}

= 4A

The reason there is no sikngle expression for the indefinite integral over the whole
interval is that, although function is continuous over the interval, the derivative is
discontinuous within the interval.
For 0 < x <π,  dy/dx  = A cos x.   For  π < x < 2π, dy/dx  = �A cos x.
At x=π,  the derivative cannot be defined, as it is different immediately to the
left and right of this point.  A function cannot be differentiated at a "sharp corner".
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Mean values

Consider the function y = f(x) in the interval  x=a to x=b.

If we divide the interval into n equal narrow strips, the mean value of y in that
interval could be approximated by adding up the heights of all the mid�ordinates
(the dotted lines) and divided by the number of ordinates, to give us the average or
mean height.  This is making the assumption that each small section of curve is a
straight line and so each strip of width ∆x is a trapezium.  This method is quite
accurate if the strips are narrow.

ie
Mean value of y  ≅   (y1 + y2 + y3 +  · · · + yn ÷ n

Which we can write more succinctly as: 1/n  �
−

n

i
iy

1

Now the area is the sum of the areas of all the trapeziums

which would be equal to �
−

n

i
iy

1

 ∆x    =    ∆x �
−

n

i
iy

1

The length of the interval is (b�a) and so ∆x  =  (b�a) ÷ n

∴  area = (b�a) 1/n  �
−

n

i
iy

1

= (b�a) × mean value

This is what we would expect, ie the area under the curve is equal to the average
height multiplied by the width.
Now, the values of y are continuously varying in the interval, and the true mean
value and the true area would be obtained if we let ∆x approach zero and n
approach  ∞ , so that we are summing a greater number of narrower trapeziums.

 y1  y2

 y3
 y4

 y5  y6
 y�

 y�
 yn

 y = f(x)

 a  b
    ∆x

 x →

 y ↑

 0
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In the limit, the area becomes �
b

a
xy d

∴   (b�a) × mean value = �
b

a
xy d

Hence  mean value = �−
b

d1
a

xy
ab

Thus, if we know the function and can integrate it, we can find its mean value.

The rule is highlighted below.

Rule for
finding mean
value Mean value of f(x)

in the interval x = a to x = b
is

�−
b
a

d)(f1 xx
ab

i.e. integrate the function over the interval and divide by the length of the interval.
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Example

Mean value = � −
−

2

0

2 d)2(
02

1 xxx

= ½ [x2 � 1/3 x3] 2
0

= ½ (4 � 8/3 � 0) = 2/3

Example Find the mean value of the rectified sine wave y = |A sin x|  in the interval x=0  to
x=2π

From page 10, the value of the integral ov

Therefore, the mean value of 4a ÷ 2π

You may recognise this figure from the th

 y = 2x � x2

 0
π 2 π

+A

�A
=

e

e

r

o

 this interval is 4A.

2A/π    ≅ 0·637 A

ry of rectifiers.

 x
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SAQ3-7-2 Find the area between the x axis and the curve y = 2x3 � 12x2 + 12x � 3
from x=1 to x=4.
What does the negative answer indicate?

SAQ3-7-3
Evaluate �

π

0
d|cos| xx

SAQ3-7-4 Find the mean value of the function f(x)=x3 in the interval x=1 to x=3.
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SAQ3-1-1 Equation Gradient Intercept
y = 5x + 1 5 1
y = �2x + 4 �2 4
y = �1·5x � 2 �1·5 �2
y = x � 3 1 �3
y = 4 0 4

SAQ3-1-2

a. y = 2x � 1 Gradient = 2

b. y = �2x + 2 Gradient = �2

c. y = 3x Gradient = 3

d. y = �8 Gradient = 0

6 4 2 0 2 4 6

10

8

6

4

2

2

4

6

8

10

 y =2x�1

 y =3x y =�2x+2

 y = �8

 x →

  y ↑
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SAQ3-1-3 a. cxym +=∴=
−
−= 77
13
620

substituting x = 1,  y = 6; 6 = 7 + c ∴  c = �1

Equation is y = 7x � 1

b. cxym +=∴=
+
+= 33

54
225

substituting x = �5,  y = �2; �2 = 15 + c ∴ c = 13

Equation is y = 3x + 13

c. cxym +−=∴−=
+
−= 22

23
155

substituting x = 3,  y = 5 5 = �6 + c ∴ c = 11

Equation is y = �2x + 11

d. cxym +−=∴−=
−

−= 44
15
204

substituting x = 1,  y = 20 20 = �4 + c ∴ c = 24

Equation is y = �4x + 24

e. cxym +=∴=
+
+= 22

26
412

substituting x = �2, y = �4 �4 = �4 + x ∴ c = 0

Equation is y = 2x
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SAQ3-1-4

a. At x = 1, gradient = 2

b. At x = 0·5, gradient = 1

c. At x = 2, gradient = 4

 y = x2
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SAQ3-1-5

a. At x = 0, gradient = 1

b. At x = π, gradient = �1

c. At x = 2π, gradient = 1

At x = π/2 and 3π/2, The slope is zero, as the tangents are horizontal.

SAQ3-2-1 By definition f´(x) =
x

xxx
x ∆

)(f)∆(f
0∆

Lim −+
→

If f(x) = x3

then f´(x) =
0∆

Lim
→x x

xxx
∆

)∆( 33 −+

=
0∆

Lim
→x

 
x

xxxxxxx
∆

)∆()∆(3∆3 33223 −+++

=
0∆

Lim
→x

 
x

xxxxx
∆

)∆()∆(3∆3 322 ++

=
0∆

Lim
→x

 3x2 + 3x∆x + (∆x)2

= 3x2

b. f(2) = 23 = 8, f´(2) = 3 × 22 = 12
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SAQ3-2-2 y dy/dx

a. x5 5x4

b. x�2 �2x�3

c. x�½ �½x�3/2

d. x3/2 3/2x½

e. 4 0
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SAQ3-2-3
a. y = 2x2 � x + 2

dy/dx = 4x � 1

b. y = 4x5 + 2x3 � 5x2 � 3x � 7

dy/dx = 20x4 + 6x2 � 10x � 3

c. y = 1/x3 = x�3

dy/dx = �3x�4 = �3/x4

d. y = √x = x½

dy/dx = ½x�½ = 1/(2 √x)

e. y = 2√x � √(x3) = 2x½ � x3/2

dy/dx = x�½ � 3/2x½ = 1/√x � 3/2 √x

f. y = (x � 3)2 = x2 � 6x + 9

dy/dx = 2x � 6

g. y = x2 � 1/x2 = x2 � x�2

dy/dx = 2x + 2x�3 = 2x + 2/x3

h. y = ln(x2) = 2 ln x

dy/dx = 2/x
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SAQ3-2-4 f(x)  =  2x3 � 9x2 + 10

f ′(x)  =  6x2 � 18x

a. f´(2) =  �12

b. f´(0) =   0

c. f´(3) =   0

d. f´(�1) =   24
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SAQ3-3-1 a. y = 3x2 tan x

dy/dx = 3x2 sec2x  +  6x tan x

b. y  =  x ln x  �  x

dy/dx = x/x + ln x  �  1 = ln x

c. y  =  ex sin x cos x

Let u  =  ex sin x, v  =  cos x

     then du/dx = ex cos x + ex sin x

= ex(cos x  +  sin x)

dv/dx = �sin x

dy/dx = ex sin x (�sin x) + cos x ex(cos x + sin x)

= ex(cos2 x � sin2 x + cos x sin x)
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SAQ3-3-2
a. y =

12
323

+
+−

x
xx

x
y

d
d = 2

232

)12(
2)3()23)(12(

+
+−−−+

x
xxxxx

= 2

23

)12(
624

+
−−+

x
xxx

b. y =
53

2

+x
x

x
y

d
d = 2

2

)53(
33)53(

+
−+

x
xxx

= 2

2

)53(
103

+
+

x
xx

c. y = 2

2

1
e5
x

x x

+

Let u  =  5x2 ex, v  =  1 + x2

Then du/dx = 5x2 ex + 10x ex  =  5xex(x + 2)

dv/dx = 2x

x
y

d
d = 22

22

)1(
e5)2()2(e5)1(

x
xxxxx xx

+
−++

= 22

3

)1(
)2(e5

x
xxx x

+
++
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SAQ3-4-1 a. y = xx 42 2 +

Let z  =  2x2 + 4x, y  =  z½

dz/dx   =  4x + 4, dy/dz  =  ½z�½  =  ½(2x2 + 4x)�½

dy/dx  = dy/dz  dz/dx = (2x + 2)(2x2 + 4x)�½

=
xx

x
42
)1(2

2 +

+

b. y = tan2x

Let z  =  tan x, y  =  z2

dz/dx   =  sec2 x, dy/dz  =  2z = 2 tan x

dy/dx   = dy/dz  dz/dx = 2 tan x sec2 x

c. y = ln(x3 + 3x)

Let z  =  x3 + 3x, y  =  ln z
dz/dx   =  3x2 + 3, dy/dz  =  1/z = 1/(x3 + 3x)

dy/dx = dy/dz  dz/dx =
xx

x
3

33
3

2

+
+

d. y = e2x + 1

Let z  =  2x + 1, y  =  ez

dz/dx   =  2, dy/dz  =  ez = e2x + 1

dy/dx   = dy/dz  dz/dx = 2 e2x + 1

e. y = ln(sec x + tan x)

Let z  =  sec x + tan x, y  =  ln z

dz/dx  =  sec x tan x + sec2 x, dy/dz  = 1/z = 1/(sec x + tan x)

dy/dx  = dy/dz  dz/dx =
xx

xxx
tansec

sectansec 2

+
+

= x
xx

x)xx sec
tansec

tan(secsec =
+

+
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f. y = (3x + 2)12

Let z  =  3x + 2, y  =  z12

dz/dx   =  3, dy/dz  =  12z11 = (3x + 2)11

dy/dx   =  dy/dz  dz/dx = 3 (3x + 2)11

g. y = sin(2x + π/6)

Let z  =  2x + π/6, y  =  sin z
dz/dx   =  2, dy/dz  =  cos z = cos(2x + π/6)

dy/dx   =  dy/dz  dz/dx = 2 cos(2x + π/6)

SAQ3-4-2 y = ln(cos 4x)

Let v  =  4x, u  =  cos v, y  =  ln u

dv/dx  =  4, du/dv  =  �sin v  =  �sin 4x, dy/du  =  1/u  =  1/cos v  =  1/cos 4x

dy/dx   =  dy/du  du/dv  dv/dx

=  
x

x
4cos

4sin4− = �4 tan 4x

SAQ3-4-3 cos x = ½(e�jx)

d/dx(cos x) = ½(jejx � je�jx)

=
2

)ee(j jj xx −−

=
j2

)ee(j jj2 xx −−

=
j2

)ee(- jj xx −− = �sin x
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SAQ3-5-1 y  =  f(x) = x4 + 4x3 + 2x2 � 2x + 1

a. dy/dx = 4x3 + 12x2 + 4x � 2

b. d²y/dx² = 12x2 + 24x + 4

c. d³y/dx³ = 24x + 24

d. f ′(2) = 4×23 + 12×22 + 4×2 � 2 = 86

e. f ′′(1) = 12×12 + 24×1 + 4 = 40

f. f ′′′(�1) = 24×(�1) + 24 = 0
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SAQ3�5�2 s = 5t4 � 14t3 + 8t2

a. We have to find the values of t when s=0.

i.e.  when 5t4 � 14t3 + 8t2  =  0

t2(5t2 � 14t + 8)  =  0

This gives the solutions;  t2=0,   ∴  t=0,  which is the starting time, and
5t2 � 14t + 8  =  0  which is a quadratic equation with 2 roots.

We can find these by factorising, ie  (5t � 4)(t � 2) = 0

∴   t = 0·8 seconds,   t = 2 seconds

ds/dt = 20t3 � 42t2 + 16t

f´(0·8) = �3·84,  hence velocity at this point =  �3·84 m/s

f´(2) = 24,  hence velocity at this point =  24 m/s

d²s/dt² = 60t2 � 84t + 16

f´´(0·8) = �12·8,  hence acceleration at this point =  �12·8 m/s2

f´´(2) = 88,  hence acceleration at this point =  88 m/s2

b. When velocity is zero,  20t3 � 42t2 + 16t  =  0

∴ 2t(10t2 � 21t + 8)  =  0

2t(2t � 1)(5t � 8)  =  0

This gives the solutions;  t=0,  0·5,  1·6 seconds.

At t=0, f ′′(0) = 16,  hence acceleration at this point =  16 m/s2

At t=0·5, f ′′(0·5) = �11,  hence acceleration at this point =  �11 m/s2

At t=1·6, f ′′(1·6) = 35·2,  hence acceleration at this point =  35·2 m/s2
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SAQ3-6-1
f(x) � xx d)(f

x5 1/6 x6 + C

√x  =  x½ 2/3 x³/²  + C

1/√x  =  x�½ 2x½ + C  =  2√x + C

x�2 �x�1 + C  =  �1/x + C

x ½x2 + C

3 3x + C
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SAQ3-6-2 a. � (3x5 + 8x3 � 15x2 + x = 1)dx

= ½x6 + 2x4 � 5x3 + ○x2 � x + C

b. ��
−= xxx

x
d2d2 1

    = 2 ln x + C = ln (Kx2)

c. � x
dx

2
= ½

½
dx x

−

�
= ½ × 2x½ + C = √x + C

d. � x
x

d2
3 = 2 3 dx x−

�

= �x�2 + C = �1/x2 = C

e. ( )3cos 2sin dx x x+�
= 3 cos d 2 sin dx x x x+� � = 3 sin x � 2 cos x + C

f. � (x + 1/√x) dx

= ½d dx x x x−+� �      = ½x2 + 2x½  + C

= ½x2 + 2√x + C



Solutions to SAQs

CW/P�362.doc 8�16

SAQ3-6-3 a. 2e dx x�

= ½ e2x + C

b. 3 2e dx x−
�

= 1/3 e3x�2 + C

c. e dx x−
�

= �e�x + C

d. ( )cos 2 / 3 dx xπ+�
= ½ sin(2x + π/3) + C

e. ( )sin 0 016 0 5 dt t⋅ + ⋅�

= �100 cos(0·01t + 0·5) + C
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SAQ3-7-1 a. � −+−
3

1

23 d)16210( xxxx

= [5/2x4 � 2/3x3 + 3x2 � x] 3
1

= (5/2×81 � 2/3×27 + 3×9 � 3) � 5/2 � 2/3 + 3 � 1)

= 2042/3

b. �
6/

0
dcos2

π
xx

= [2 sin x] 6/
0
π

= 2(½ � 0)

= 1

c. �
4

1
d3 xx

= �
4

1

2/1 d3 xx

= [2x³/²] 4
1

= 2×8 � 2×1

= 14
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SAQ3-7-2

SAQ3-7-3

( )4 3 2

1
2 12 12 3 dx x x x− + −�

= [½x4 � 4x3 + 6x2 � 3x] 4
1

= (½×256 � 4×64 + 6×16 � 3×4) � (½�4 + 6�3)

= �43½

The negative answer indicates that the area or most of the area lies below the x
axis.

It can be seen that the function y = | cos x | has a discontinuous derivative at x=π/2.
To integrate it, we have to split it into 2 parts.

0
cos dx x

π

� =
/ 2

0
cos dx x

π

� +
/ 2

cos dx x
π

π
−�

= [sin x] 2/
0
π

= (1 � 0) � (0 � 1)

= 2

0

 y

ππ 
2

 x

 1

 �1

y = |cos x|

y = cos x
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SAQ3-7-4 Mean value = �−
3

1

3d
13

1 xx

= ½ [¼x4] 3
1

= 1/8 (81 � 1)

                             = 10


