

THE ROYAL SCHOOL OF SIGNALS

TRAINING PAMPHLET NO: $\mathbf{3 6 1}$

DISTANCE LEARNING PACKAGE CISM COURSE 2001 MODULE 2 - COMPLEX NUMBERS

Prepared by:
Tech Wing
CISM Group
Issue date: May 2001

数笑 Training \& ARMy \quad Recruiting

This publication is for training purposes only. It is not for general external use. It is not subject to amendment and must not be quoted as an authority.

Authority: \qquad (Name in blocks)

Signature: \qquad

Date: \qquad

Review Date	Review Date	Review Date
Signature	Signature	Signature

Authority: \qquad (Name in blocks)

Signature: \qquad

Date: \qquad

Review Date	Review Date	Review Date
Signature	Signature	Signature

Authority: ____ (Name in blocks)		
Signature:		
Date: \quad Review Date	Review Date	Review Date
Signature	Signature	Signature

CONTENTS

Page
Contents i
Chapter 1 - Real, Imaginary and Complex Numbers 1-1
Chapter 2 - Complex Number Arithmetic in Rectangular Form 2-1
Chapter 3 - Polar Form 3-1
Chapter 4 - Exponential Form and De Moivre's Theorem 4-1
Chapter 5 - Roots of Complex Numbers 5-1
Chapter 6 - Equating Parts 6-1
Chapter 7 - Complex Roots of Equations 7-1
Chapter 8 - Solutions to SAQs 8-1

Chapter 1

Real, imaginary and complex numbers

Imaginary numbers

The j operator

We saw in Section 1, chapter 1 that the Real numbers consist of rational and irrational numbers and can be represented graphically by points on a line. We also saw that certain equations have no solution amongst the real numbers.
For example $x^{2}=-1$ has no real solution since multiplying any number, positive or negative, by itself gives a positive result. In order to provide solutions to such problems, the number system was extended and the so-called imaginary numbers were conceived.

We define a number j such that $\mathrm{j}^{2}=-1$. Note that in pure mathematics texts, i is used. In electrical engineering we use j so as not to cause confusion with the symbol for current. j is called an imaginary number

The term "imaginary" is perhaps an unfortunate one since it implies that imaginary numbers have no actual meaning. However, all numbers such as negative numbers and irrational numbers were originally an extension of the number system, necessary for the solution of new problems, and were therefore "imagined" by someone. We are all perfectly familiar with everyday applications of fractions and negative numbers,. and as we shall see, imaginary numbers also have practical physical interpretations.

It is obvious that j does not fit anywhere on our Real Line. You will recall from Section 1 that multiplication by -1 gives a rotation of 180°. Since $j^{2}=-1$, it seems reasonable to assume that a multiplication by j gives a rotation of 90°. Multiplication by j again, ie by $\mathrm{j}^{2}=-1$ gives a further 90° rotation to 180°, bringing us back on to the Real Line at -1 .

Multiplying -1 by j gives a further 90° rotation indicating that multiplying 1 by -j
would give a rotation of 90° clockwise ie -90°. Multiplying -j by jagain brings us back to 1 .

Thus we can see that $1 \times j=j \quad$ rotation of 90° from 1
$\mathrm{j} \times \mathrm{j}=-1 \quad$ rotation of 180° from 1
$-1 \times j=-j \quad$ rotation of 270° or -90° from 1
$-\mathrm{j} \times \mathrm{j}=1 \quad$ rotation of 360° or 0° from 1
Thus the imaginary number j may be regarded as a rotational operator. This has useful applications to AC circuit theory where a quantity such as a voltage which is in quadrature may be represented as multiplied by j to give a rotation of 90° or multiplied by -j to give a rotation of -90°.
a. $\quad \mathrm{j}^{2}$
b. j^{3}
c. j^{4}
d. $\quad-j^{2}$
e. $(-\mathrm{j})^{2}$
f. j^{5}
g. j^{6}
h. $(-\mathrm{j})^{4}$
i. $\quad-j^{4}$

The Argand diagram

Since multiplying a real number by j represents a rotation of 90°, we may represent the imaginary numbers graphically as lying on an axis at right angles to the real line.

This graphical representation is called an Argand diagram.
The imaginary numbers lie on the imaginary axis at 90° to the real axis, so for example, the imaginary number j 3 would be obtained by rotating 90° from the real, number 3 . The imaginary number -j 4 would be obtained by rotating 90° from the real number -4 or by rotating -90° from the real number +4 .

It does not matter whether we write, for example, $j 3$ or $3 j$. They are the same thing. In electrical engineering, where we regard j as a rotational operator, we tend to write it in the form j 3 , implying that it is the real quantity 3 rotated by 90°, ie in quadrature. In mathematics texts, they tend to write it in the form 3 j or more commonly, $3 i$.

Note that the real and imaginary numbers do not coincide at any point other than zero.

Section 2: Complex numbers - Real, imaginary \& complex numbers

SAQ2-1-2
Simplify
a. $5 \times \mathrm{j}$
b. $6 \times-\mathrm{j}$
c. $\mathrm{j} 2 \times 3$
d. $\mathrm{j} 4 \times \mathrm{j}$
e. $-\mathrm{j} 2 \times-\mathrm{j}$
f. $\quad-\mathrm{j} 2 \times \mathrm{j} 7$
g. $\quad(\mathrm{j} 2)^{2}$
h. $(-\mathrm{j} 2)^{3}$
i. $\quad-(-\mathrm{j} 2)^{4}$

Section 2: Complex numbers - Real, imaginary \& complex numbers

Complex numbers

Rectangular form

SAQ2-1-3

A complex number is a number which contains a real part and an imaginary part, ie $z=a+\mathrm{j} b$ is a complex number, where a, b are real numbers. The real part is a and the imaginary part is $\mathrm{j} b$. On the Argand diagram a complex number is represented by a point in the plane.

For example, the point $3+j 4$ has a real coordinate of 3 and an imaginary coordinate of 4 . The point $-5-\mathrm{j} 2$ has a real coordinate of -5 and an imaginary coordinate of -2 . This plane is called the complex plane.

Complex numbers written in the form of real and imaginary coodinates, ie the form $a+\mathrm{j} b$, are said to be in rectangular form.

A real number may be regarded as a complex number with zero imaginary part. Hence, the real numbers are a subset of the complex numbers. Similarly a purely imaginary number may be regarded as a complex number with zero real part.
a. Write down the Real part and the imaginary part of the complex numbers in the table.

Number	Real part	Imaginary part
$5+\mathrm{j} 4$		
$3-\mathrm{j} 2$		
$-1-\mathrm{j}$		
6		
j 8		
$\sqrt{ } 9$		
$\sqrt{ }-9$		

Section 2: Complex numbers - Real, imaginary \& complex numbers
b. Mark the complex numbers from the table in part (a), on the Argand diagram below.

Representation of vectors

One important application of complex numbers is their use to represent vectors. It is convenient to use the complex number $a+\mathrm{j} b$ to represent the vector joining the origin $0+\mathrm{j} 0$ to the point $a+\mathrm{j} b$. The vectors may then be added and multiplied using complex number arithmetic, which considerably simplifies their manipulation.

Representation of vectors by complex numbers

Chapter 2

Complex number arithmetic in rectangular form

Section 2: Complex numbers - Complex number arithmetic in rectangular form

Complex number arithmetic

Addition and subtraction of complex numbers

Examples

Examples

The complex numbers follow the same basic laws as real numbers, ie If U, V, W, are complex numbers:

$$
U+V=V+U
$$

$$
U V \quad=V U \quad \text { (commutative laws) }
$$

$$
(U+V)+W \quad=\quad U+(V+W)
$$

$$
(U V) W \quad \text { (associative laws) }
$$

$$
U(V+W) \quad=\quad U V+U W \quad \text { (distributive law) }
$$

The addition of complex numbers is similar to the addition of vectors, ie the horizontal and vertical components are added separately. To add 2 complex numbers, simply add their real parts and add their imaginary parts.

$$
\begin{array}{ll}
z_{1}=a+\mathrm{j} b, \quad z_{2}=c+\mathrm{j} d, & \text { then } \\
z_{1}+z_{2}=a+c+\mathrm{j} b+\mathrm{j} d & =\quad(a+c)+\mathrm{j}(b+d)
\end{array}
$$

$$
2+\mathrm{j} 3+4+\mathrm{j} 5=6+\mathrm{j} 8
$$

$$
-5+\mathrm{j} 6+2-\mathrm{j}=-3+\mathrm{j} 5
$$

$$
3-\mathrm{j} 2+-1+\mathrm{j} 7=2+\mathrm{j} 5
$$

Subtraction is similar:

$$
\begin{aligned}
& \text { If } z_{1}=a+\mathrm{j} b, \quad z_{2}=c+\mathrm{j} d, \quad \text { then } \\
& z_{1}-z_{2} \quad=\quad a-c+\mathrm{j} b-\mathrm{j} d=(a-c)+\mathrm{j}(b-d) \\
& 4+\mathrm{j} 2-(3+\mathrm{j} 4)=1-\mathrm{j} 2 \\
& -6-\mathrm{j} 5-(3-\mathrm{j} 7)=-9+\mathrm{j} 2
\end{aligned}
$$

Section 2: Complex numbers - Complex number arithmetic in rectangular form

SAQ2-2-1	For the follow	values	and z_{2}, ca	te (i) z_{1}	(ii)
		z_{1}	z_{2}	$z_{1}+z_{2}$	$z_{1}-z_{2}$
	a.	$5+\mathrm{j} 2$	$3+\mathrm{j} 4$		
	b.	$-3+\mathrm{j}$	$4+\mathrm{j} 9$		
	c.	5-j3	6-j7		
	d.	$-3+\mathrm{j} 2$	8-j10		
	e.	-2-j	-5-j12		

SAQ2-2-2
If $z_{1}=2+\mathrm{j} 6$,
$z_{2}=5-\mathrm{j} 2$
plot the following complex numbers as vectors on the Argand diagram below:
a. z_{1}
b. z_{2}
c. $-z_{2}$
d. $z_{1}+z_{2}$
e. $z_{1}-z_{2}$

Do the rules for adding and subtracting complex numbers confirm the parallelogram rule for vectors? Sketch in the parallelograms and check.

Section 2: Complex numbers - Complex number arithmetic in rectangular form

This part has been left blank for working SAQs

Applications to AC networks

Use of calculators

One of the most important uses of complex numbers is the representation of vector quantities in AC circuit theory. This section does not discuss AC theory which will be covered in Section 5; Electrical Principles. However, the student will probably be aware already, that a quantity such as a voltage rotated in phase by $\pm 90^{\circ}$ may be regarded as multiplied by $\pm \mathrm{j}$, and that an impedance is represented by a complex number whose real part is the resistance and whose imaginary part is the reactance, so that we can write the impedance of a series LCR circuit as

$$
Z=R+\mathrm{j}(\omega \mathrm{~L}-1 / \omega \mathrm{C})
$$

The various components of an AC network may then be represented by complex numbers and problems may be solved using complex number arithmetic. This considerably simplifies the solution of AC networks.

All problems in this section may be solved without any knowledge of electrical theory.

Some scientific calculators will perform complex arithmetic. Initially, you should solve the SAQs without this facility, using the calculator for addition, subtraction, multiplication, division, and trigonometric functions only, in order to become familiar with the methods. Subsequently you could use the calculator to check your answers.

Section 2: Complex numbers - Complex number arithmetic in rectangular form

Section 2: Complex numbers - Complex number arithmetic in rectangular form
SAQ2-2-3 \quad Calculate $z_{1} z_{2}$ in the form $a+\mathrm{j} b$ for the following complex numbers:

Section 2: Complex numbers - Complex number arithmetic in rectangular form
a. Plot on the Argand diagram below, the vector representing $z_{1}=5+\mathrm{j} 7$
b. Calculate $z_{2}=\mathrm{j}(5+\mathrm{j} 7)$ in the form $a+\mathrm{j} b$ and plot this vector also.
c. Measure the angle between z_{1} and z_{2}. What rule does the result confirm?
d. Calculate $z_{3}=-\mathrm{j}(5+\mathrm{j} 7)$ in the form $a+\mathrm{j} b$ and plot this vector also.

What are the angles between (i) z_{1} and z_{3} What principle does this illustrate?
(ii) z_{2} and z_{3} ?

Section 2: Complex numbers - Complex number arithmetic in rectangular form

Complex conjugate

The conjugate of the complex number $a+\mathrm{j} b$ is the number $a-\mathrm{j} b$. For example, the conjugate of $2+\mathrm{j} 3$ is $2-\mathrm{j} 3$. The conjugate of $4-\mathrm{j} 5$ is $4+\mathrm{j} 5$.

The conjugate of the complex number z if often denoted z^{*} or \bar{z}.

Rule: To find the conjugate of a complex number, change the sign of the imaginary part.

The complex conjugate is a very useful tool. The sum or product of a complex number and its conjugate are always real.

Sum: $\quad(a+\mathrm{j} b)+(a-\mathrm{j} b)=2 a$, which is real.
Product: $\quad(a+\mathrm{j} b)(a-\mathrm{j} b)=a^{2}-(\mathrm{j} b)^{2}=a^{2}-\left(-b^{2}\right)$
$=a^{2}+b^{2}$, which is real.

Note the similarity to conjugate surds (section 1). The difference is that with complex numbers, the j^{2} causes a change in sign:

$$
\begin{aligned}
& (a+\mathrm{b})(a-b)=a^{2}-b^{2} \\
& (a+\mathrm{j} b)(a-\mathrm{j} b)=a^{2}+b^{2}
\end{aligned}
$$

Rule: The complex number $a+\mathrm{j} b$ or $a-\mathrm{j} b$ multiplied by its conjugate is:

z	z^{*}	$z+z^{*}$	$z z^{*}$
$2+\mathrm{j} 3$	$2-\mathrm{j} 3$	4	13
$2-\mathrm{j} 5$	$4+\mathrm{j} 5$	8	41
$-2+\mathrm{j} 3$	$-2-\mathrm{j} 3$	-4	13
$-5-\mathrm{j} 7$	$-5+\mathrm{j} 7$	-10	74
$\sqrt{ } 2+\mathrm{j} \sqrt{ } 2$	$\sqrt{ } 2-\mathrm{j} \sqrt{ } 2$	$2 \sqrt{ } 2$	4

Section 2: Complex numbers - Complex number arithmetic in rectangular form
For the values of z in the table, write down
(i) the conjugate, z^{*}
(ii) the $\operatorname{sum} z+z^{*}$
(iii) the product $z z^{*}$

z	z^{*}	$z+z^{*}$	$z z^{*}$
$4+\mathrm{j} 6$			
$3-\mathrm{j} 7$			
$-2+\mathrm{j} 5$			
$-9-\mathrm{j} 12$			
$2-\mathrm{j} \sqrt{ } 3$			
$1 / \sqrt{ } 2+\mathrm{j} / \sqrt{ } 2$			
$-1 / 2-\mathrm{j} \sqrt{3} / 2$			

Reflection

SAQ2-2-6

The complex conjugate of a number represents a reflection in the real axis. Imagine the real axis as a mirror with the vector $5+\mathrm{j} 3$ reflected in it.

p361 fig6
If z is a complex number, its conjugate z^{*} represents a reflection in the real axis. What does $-z^{*}$ represent?

Section 2: Complex numbers - Complex number arithmetic in rectangular form

Division of complex numbers

Examples

To divide one complex number by another, we turn the divisor into a real number. Therefore we multiply numerator (top) and denominator (bottom) by the complex conjugate of the denominator, ie

$$
\frac{x}{y}=\frac{x y^{*}}{y y^{*}}
$$

By multiplying numerator and denominator by the same quantity we are, of course, multiplying it by 1 , which does not change its value, however, it conveniently turns the denominator into a real number.
a. $\quad \frac{2+\mathrm{j} 3}{4+\mathrm{j} 5}$

$$
\begin{aligned}
& =\frac{(2+j 3)(4-j 5)}{(4+j 5)(4-j 5)}=\frac{8-j 10+j 12+15}{4^{2}+5^{2}} \\
& =\quad \frac{23+j 2}{41}=\frac{23}{41}+j \frac{2}{41} \\
& =0.561+\mathrm{j} 0.049 \text { to } 3 \text { decimal places. }
\end{aligned}
$$

b. $\quad \frac{7+\mathrm{j} 5}{3-\mathrm{j} 4}$

$$
=\frac{(7+\mathrm{j} 5)(3+\mathrm{j} 4)}{(3-\mathrm{j} 4)(3+\mathrm{j} 4)}=\frac{21+\mathrm{j} 28+\mathrm{j} 15-20}{3^{2}+4^{2}}
$$

$$
=\frac{1+\mathrm{j} 43}{25}=\frac{1}{25}+\mathrm{j} \frac{43}{25}
$$

$$
=0.04+\mathrm{j} 1.72
$$

c. $\quad \frac{1}{j}=\frac{1 \times-j}{j \times-j}=\frac{-j}{1}=-j$

This last result is particularly useful, because we can express -j as $\frac{1}{\mathrm{j}}$
For example, later in AC theory we shall use the expression

$$
R-\frac{j}{\omega C} \equiv R+\frac{1}{j \omega C}
$$

This formula may be written in either form, whichever is convenient.

Section 2: Complex numbers - Complex number arithmetic in rectangular form
SAQ2-2-7
Evaluate the following, expressing the answers in the form $a+\mathrm{j} b$.
a. $\quad \frac{3+\mathrm{j} 8}{1+\mathrm{j}}$
b. $\frac{5-\mathrm{j} 6}{6-\mathrm{j} 8}$
c. $\quad \frac{-8-\mathrm{j} 7}{-7-\mathrm{j}}$
d. $\quad \frac{10}{2+\mathrm{j}}$
e. $\frac{1}{R+j \omega L}$

Section 2: Complex numbers - Complex number arithmetic in rectangular form

SAQ2-2-8

The impedance of a series circuit is given by

$$
Z=Z_{1}+Z_{2}+Z_{3}
$$

Calculate Z, given $Z_{1}=1000+\mathrm{j} 250$ ohms, $Z_{2}=2200-\mathrm{j} 750$ ohms, $Z_{3}=300-\mathrm{j} 125$ ohms.

The impedance of a parallel circuit is given by

$$
Z=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

Calculate Z, given $Z_{1}=1 \cdot 0-\mathrm{j} 1 \cdot 5 \mathrm{k} \Omega, \quad Z_{2}=5 \cdot 0+\mathrm{j} 3 \cdot 2 \mathrm{k} \Omega$.

$$
\text { If } \frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}
$$

calculate Z, given $Z_{1}=2+\mathrm{j} 3$,

$$
Z_{2}=1-\mathrm{j}, \quad Z_{3}=3+\mathrm{j} 4
$$

Solve the following equation for z.

$$
\frac{3 z}{1-\mathrm{j}}+\frac{3 z}{\mathrm{j}} \quad \frac{4}{3-\mathrm{j}}
$$

Chapter 3

Polar form

Polar form of a \mid The form $a+\mathrm{j} b$ of a complex number is called the rectangular form or the
complex number
modulus
argument

Cartesian form. The number is specified by its Real coordinate a and its Imaginary coordinate b.

The complex number z could be equally specified by the length from 0 to z, which we shall call r, and the angle θ measured from the positive real axis. (You will recall that a positive angle represents an anticlockwise rotation.)
The polar form of z is written: $z=r \angle \theta$
r is called the modulus or the magnitude of z and written $|z|$. It is a scalar quantity since it measures the length from 0 to z irrespective of the direction. Hence $r \geq 0$.
θ is called the argument of z, or simply the angle. It is sometimes written as $\arg (z)$. It is the angle between the vector from 0 to z and the positive real axis. By convention, a rotation greater than 180° is regarded as a negative (clockwise) angle, so that the numerically smallest value of θ is used. Hence $-180^{\circ}<\theta \leq 180^{\circ}$, or in radians $-\pi<\theta \leq \pi$.

For example, $4.5 \angle 200^{\circ}$ would normally be written as $4.5 \angle-160^{\circ}$.

Conversion between rectangular and polar forms

Rectangular to polar Examples

Determining the correct quadrant for the angle

The relationship between (a, b) and (r, θ) can be seen from the diagram.

$$
r=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \theta=b / a
$$

Rules:

To convert from rectangular to polar form

$$
r=\sqrt{a^{2}+b^{2}}, \quad \tan \theta=b / a
$$

To convert from polar to rectangular form

$$
a=r \cos \theta \quad b=r \sin \theta
$$

a. In the above diagram, $z=4+\mathrm{j} 3$. Convert $4+\mathrm{j} 3$ to polar form.

$$
r=|z|=\sqrt{4^{2}+3^{2}}=5
$$

$$
\tan \theta=3 / 4=0.75 \quad \therefore \theta=\tan ^{-1} 0.75=36 \cdot 9^{\circ} .
$$

$$
\text { Hence, } 4+\mathrm{j} 3=5 \angle 36 \cdot 9^{\circ} .
$$

If $\tan \theta=b / a$, it is not necessarily true that $\theta=\tan ^{-1}(b / a)$. The function $\tan ^{-1} x$ ($\operatorname{or} \arctan x$) is defined as having a value between -90° and $+90^{\circ}$.
ie

$$
-90^{\circ}<\tan ^{-1} x<90^{\circ}
$$

or in radians,

$$
-\pi / 2<\tan ^{-1} x<\pi / 2
$$

This is the range of the angle given by the $\tan ^{-1}$ function on a calculator. So, for example, although $\tan 135^{\circ}=-1$, if we calculate $\tan ^{-1}(-1)$ we get the result $\theta=-45^{\circ}$.

Determining the correct quadrant is quite simple. Looking at the diagram:

If a, b are both positive

$$
0^{\circ}<\theta<90^{\circ}
$$

If a positive, b negative

$$
-90^{\circ}<\theta<0^{\circ}
$$

If a negative, b positive $90^{\circ}<\theta<180^{\circ}$

If a, b are both negative
$-180^{\circ}<\theta<-90^{\circ}$

Examples
b. Convert $z=-5+\mathrm{j} 4$ to polar form.
$z \mid==\sqrt{(-5)^{2}+4^{2}}=6 \cdot 4$
$\tan \theta=-4 / 5=-0 \cdot 8$
$\tan ^{-1}(00 \cdot 8)=-38 \cdot 7^{\circ}$ but θ must lie between 90° and 180°.

Hence, $\theta=-38 \cdot 7^{\circ}+180^{\circ}=141 \cdot 3^{\circ}$

$$
\therefore-5+\mathrm{j} 4=6 \cdot 4 \angle 141 \cdot 3^{\circ}
$$

c. Convert $z=-6-\mathrm{j} 3$ to polar form
$|z|==\sqrt{(-6)^{2}+(-3)^{2}}=6 \cdot 7$
$\tan \theta=-3 /(06)=0.5$
$\tan ^{-1} 0.5=26 \cdot 6^{\circ}$ but θ must
lie between -90° abd -180°.

Hence, $\theta=26 \cdot 6^{\circ}-180^{\circ}=-153 \cdot 4^{\circ}$

$$
\therefore-6-\mathrm{j} 3=6 \cdot 7 \angle-153 \cdot 4^{\circ}
$$

A "mental sketch" will show which quadrant contains the angle.

Example

Pure real or pure imaginary
complex numbers

Example
d. Convert $z=3-\mathrm{j} 4$ to polar form
$|z|=\sqrt{3^{2}+(-4)^{2}}=5$
$\tan \theta=-4 / 3=-1.3333$
$\tan ^{-1}(-1 \cdot 3333)=-53 \cdot 1^{\circ}$
The angle must lie between -90° and 0° $\therefore-53 \cdot 1^{\circ}$ is the correct angle.
$\therefore 3-\mathrm{j} 4=5 \angle-53 \cdot 1^{\circ}$

> Rules: If a is positive, then $\theta=\tan ^{-1}(b / a)$
> If a is negative, then $\theta=\tan ^{-1}(b / a) \pm 180^{\circ}$. ie add or subtract 180° to $\tan ^{-1}(b / a)$, whichever gives the angle in the correct range, $-180^{\circ}<\theta \leq 180^{\circ}$.

What happens if a or b is zero? The angle is not in any particular quadrant but lies on one of the axes. This happens if the number is purely real or purely imaginary. However it is still a complex number and has a rectangular and a polar form.

For example $z=0+\mathrm{j}$
We cannot use the formula $\tan ^{-1}(1 / 0)$ since division by zero is not permitted. However, it is clear that:

$$
\begin{array}{ll}
1=1 \angle 0^{\circ}, & -1=1 \angle 180^{\circ} \\
\mathrm{j}=1 \angle 90^{\circ}, & -\mathrm{j}=1 \angle-90^{\circ}
\end{array}
$$

Convert - j 6 to polar form.
-j 6 clearly has a magnitude of 6 at an angle of -90°.
$\therefore-\mathrm{j} 6=6 \angle-90^{\circ}$

Polar to rectangular

Polar to rectangular conversion is usually more straightforward since most calculators will evaluate sines and cosines of any sized angle without having to worry about the quadrant.

Since, $\quad a=r \cos \theta, \quad b=r \sin \theta$

$$
\begin{aligned}
r \angle \theta & \equiv r \cos \theta+\mathrm{j} r \sin \theta \\
& \equiv r(\cos \theta+\mathrm{j} \sin \theta)
\end{aligned}
$$

Examples
a. Convert $4 \angle 30^{\circ}$ to rectangular form.

$$
\begin{aligned}
4 \angle 30^{\circ} & =4\left(\cos 30^{\circ}+\mathrm{j} \sin 30^{\circ}\right) \\
& =4(0 \cdot 866+\mathrm{j} 0 \cdot 5) \\
& =3 \cdot 464+\mathrm{j} 2
\end{aligned}
$$

b. Convert $5 \cdot 4 \angle-60^{\circ}$ to rectangular form.

$$
\begin{aligned}
5 \cdot 4 \angle-60^{\circ} & =5 \cdot 4\left(\cos \left(-60^{\circ}\right)+\mathrm{j} \sin \left(-60^{\circ}\right)\right) \\
& =5 \cdot 4(0 \cdot 5-\mathrm{j} 0 \cdot 866) \\
& =2 \cdot 7-\mathrm{j} 4 \cdot 677
\end{aligned}
$$

c. Convert $6 \cdot 8 \angle 135^{\circ}$ to rectangular form.

$$
\begin{aligned}
6 \cdot 8 \angle 135^{\circ} & =6 \cdot 8\left(\cos 135^{\circ}+\mathrm{j} \sin 135^{\circ}\right) \\
& =6 \cdot 8(-0 \cdot 707+\mathrm{j} 0 \cdot 707) \\
& =-4 \cdot 808+\mathrm{j} 0 \cdot 808
\end{aligned}
$$

d. Convert $10 \angle-150^{\circ}$ to rectangular form.

$$
\begin{aligned}
10 \angle-150^{\circ} & =10\left(\cos \left(-150^{\circ}\right)+\mathrm{j} \sin \left(-150^{\circ}\right)\right) \\
& =10(-0 \cdot 866-\mathrm{j} 0 \cdot 5) \\
& =-8 \cdot 66-\mathrm{j} 5
\end{aligned}
$$

[^0]| SAQ2-3-2 | Express the following complex numbers in polar form: |
| :---: | :---: |
| | a. $\mathrm{j} 2 \cdot 5$ |
| | b. $\quad-\mathrm{j} 7$ |
| | c. -5 |
| | d. $3 \cdot 8$ |
| SAQ2-3-3 | Convert the following complex numbers to polar form, expressing the angle exactly in radians. |
| | a. $3+\mathrm{j} 3$ |
| | b. $\quad-\sqrt{ } 3+\mathrm{j}$ |
| | c. $-2-\mathrm{j} 2 \sqrt{ } 3$ |

Multiplication \mid Addition and subtraction of complex numbers must be done in rectangular form, and division in polar form however multiplication and division are much more easily performed in polar form using the following rules:

If $r_{1} \angle \theta_{1}, \quad r_{2} \angle \theta_{2} \quad$ are 2 complex numbers:

$$
r_{1} \angle \theta_{1} \times r_{2} \angle \theta_{1}=r_{1} r_{2} \angle\left(\theta_{1}+\theta_{2}\right)
$$

ie when multiplying; multiply the magnitudes and add the angles.

$$
\frac{r_{1} \angle \theta_{1}}{r_{2} \angle \theta_{2}}=\frac{r_{1}}{r_{2}} \angle\left(\theta_{1}-\theta_{2}\right)
$$

ie when dividing; divide the magnitudes and subtract the angles.

Examples
$\begin{array}{llll}\text { a. } & 2 \angle 20^{\circ} \times 3 \angle 55^{\circ} & =6 \angle 75^{\circ} & \\ \text { b. } & 4 \angle-45^{\circ} \times 5 \angle 130^{\circ} & =20 \angle 85^{\circ} & \\ \text { c. } & 1.5 \angle 80^{\circ} \times 6 \angle 150^{\circ} & =9 \angle 230^{\circ} & =9 \angle\left(230^{\circ}-360^{\circ}\right) \\ & & & =9 \angle-130^{\circ}\end{array}$
Note: Subtract 360° to make $-180^{\circ}<\theta \leq 180^{\circ}$
d. $\quad 2.4 \angle-100^{\circ} \times 3.5 \angle-150^{\circ}=8.4 \angle-250^{\circ}=8 \cdot 4 \angle\left(-250^{\circ}+360^{\circ}\right)$

$$
=8 \cdot 4 \angle 110^{\circ}
$$

Note: Add 360° to make $-180^{\circ}<\theta \leq 180^{\circ}$
e. $6 \angle 75^{\circ} \div 3 \angle 30^{\circ} \quad=2 \angle 45^{\circ}$
f. $7 \angle-56^{\circ} \div 2 \angle-150^{\circ}=3 \cdot 5 \angle 94^{\circ}$
g. $24 \angle 120^{\circ} \div 6 \angle-130^{\circ}=4 \angle 250^{\circ}=4 \angle\left(250^{\circ}-360^{\circ}\right)$

$$
=4 \angle-110^{\circ}
$$

Note: Subtract 360° to make $-180^{\circ}<\theta \leq 180^{\circ}$
h. $5 \cdot 5 \angle-80^{\circ} \div 1 \cdot 1 \angle 200^{\circ}=5 \angle-280^{\circ}=5 \angle\left(-280^{\circ}+360^{\circ}\right)$

$$
=5 \angle 80^{\circ}
$$

Note: Add 360° to make $-180^{\circ}<\theta \leq 180^{\circ}$

Rotating by any multiple of 360° obviously gives the same values of a and b.

Proof of multiplication and division rules

The proofs are given below of the rules for multiplication and division in polar form. These proofs are given for interest only. You may skip over them if you prefer.

In these proofs, we make use of the trigonometric identities:
$\sin (A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B) \equiv \cos A \cos B \mp \sin A \sin B$
$\cos ^{2} A+\sin ^{2} A \equiv 1$
$r_{1} \angle \theta_{1} \times r_{2} \angle \theta_{2}=r_{1}\left(\cos \theta_{1}+\mathrm{j} \sin \theta_{1}\right) r_{2}\left(\cos \theta_{2}+\mathrm{j} \sin \theta_{2}\right)$
$=r_{1} r_{2}\left(\cos \theta_{1}+\mathrm{j} \sin \theta_{1}\right)\left(\cos \theta_{2}+\mathrm{j} \sin \theta_{2}\right)$
$=r_{1} r_{2}\left\{\cos \theta_{1} \cos \theta_{2}+\mathrm{j}^{2} \sin \theta_{1} \sin \theta_{2}+\mathrm{j} \sin \theta_{1} \cos \theta_{2}+\mathrm{j} \cos \theta_{1} \sin \theta_{2}\right\}$
$=r_{1} r_{2}\left\{\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+\mathrm{j}\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right\}$
$\left.=r_{1} r_{2}\left\{\cos \theta_{1}+\cos \theta_{2}\right)+\mathrm{j} \sin \left(\theta_{1}+\theta_{2}\right)\right\}$
$=r_{1} r_{2} \angle\left(\theta_{1}+\theta_{2}\right)$

Division

SAQ2-3-6 $|$| Evaluate in polar form: | |
| :--- | :--- |
| a. | $3 \cdot 2 \angle 80^{\circ} \times 4.5 \angle 23^{\circ}$ |
| b. | $7 \cdot 4 \angle 120^{\circ} \times 8 \angle 75^{\circ}$ |
| c. | $8 \cdot 2 \angle-\pi / 6 \times 3 \cdot 5 \angle 2 \pi / 3$ |
| d. | $9 \cdot 5 \angle-40^{\circ} \times 3 \angle-175^{\circ}$ |
| e. | $2 \cdot 2 \angle \pi \times 7 \cdot 4 \angle \pi / 4$ |
| i. | $15 \angle 3 \pi / 4 \div 4 \angle-2 \pi / 3$ |
| h. | $19 \angle-100^{\circ} \div 2 \angle 80^{\circ}$ |
| f. | $3 \cdot 8 \angle 135^{\circ} \div 3 \cdot 2 \angle 70^{\circ}$ |

Chapter 4

Exponential form and
 De Moivre's theorem

theorem

Exponential
form of a complex number

De Moivre's It follows from the rule for multiplication that:
$(r \angle \theta)^{2}=r \times r \angle(\theta+\theta)=r^{2} \angle 2 \theta$
$(r \angle \theta)^{3}=r \angle \theta \times(r \angle \theta)^{2}=r^{3} \angle 3 \theta$
We can see that by successive multiplication that $(r \angle \theta)^{n}=r^{\mathrm{n}} \angle n \theta$
If $r=1$, we can write the above as $(\cos \theta+\mathrm{j} \sin \theta)^{n}=(\cos n \theta+\mathrm{j} \sin n \theta$
This is called de Moivre's theorem. It can be shown that it is true for any value of n , not just positive integers. De Moivre's theorem and the rules for multiplication and division in polar form, can be proved more directly from the exponential form of a complex number which we shall now consider.

Something about the above rules may seem familiar from Section 1, chapter 3. When multiplying we add the angles. When dividing we subtract the angles. When raising to a power we multiply the angle by the power. These look like the rules of indices. This is no coincidence, since θ is in fact an imaginary index. The exponential form, sometimes called Euler's identity is:

$$
\cos \theta+j \sin \theta \equiv \mathbf{e}^{\mathrm{j} \theta}
$$

in the form $\mathrm{e}^{\mathrm{j} \theta}, \theta$ is always measured in radians.
Thus the exponential form of a complex number is

$$
r \angle \theta \equiv r \mathrm{e}^{\mathrm{j} \theta}
$$

θ measured in radians

A proof of Euler's identity is given on the next page, however, this identity is often taken as a definition of $\mathrm{e}^{\mathrm{j} \theta}$. All the trigonometric identities can be derived from it.

The proof is given for interest only and you may skip it if you wish. The exponential form is very important in signal processing theory and should be committed to memory.

Section 2: Complex numbers - Exponential form \& De Moivre's theorem

Powers of complex numbers	De Moivre's theorem may be used to find powers of complex numbers which would be very laborious in rectangular form.
Example	Evaluate $(0 \cdot 9+\mathrm{j} 1 \cdot 2)^{7}$ Expanding this in rectangular form would take some time. In polar form, $0 \cdot 9+\mathrm{j} 1 \cdot 2=1.5 \angle 53 \cdot 13^{\circ}$. $\text { By De Moivre's theorem, } \begin{aligned} \left(1 \cdot 5 \angle 53 \cdot 13^{\circ}\right)^{7} & =1 \cdot 5^{7} \angle 53 \cdot 13^{\circ} \mathrm{x} 7 \\ & =17 \cdot 09 \angle 372^{\circ}=17 \cdot 09 \angle 12^{\circ} \\ & =16 \cdot 72+\mathrm{j} 3 \cdot 53 \end{aligned}$
Complex conjugate	$1 / \mathrm{e}^{\mathrm{j} \theta}=\mathrm{e}^{-\mathrm{j} \theta} ; \quad$ ie $\mathrm{e}^{\mathrm{j} \theta}$ and $\mathrm{e}^{-\mathrm{j} \theta} \quad$ are inverses of each other. $e^{j \theta}$ and $\mathrm{e}^{-\mathrm{j} \theta}$ are also complex conjugates of each other. Proof: \quad From Euler's identity, $\mathrm{e}^{\mathrm{j} \theta} \equiv \cos \theta+\mathrm{j} \sin \theta$ You should recall from trigonometry that $\cos (-\theta)=\cos \theta$, ie cosine is an even function. $\sin (-\theta)=-\sin \theta$, ie sine is an odd function. Hence, $\mathrm{e}^{-\mathrm{j} \theta} \equiv \cos \theta-\mathrm{j} \sin \theta$, which is the conjugate of $\mathrm{e}^{\mathrm{j} \theta .}$
SAQ2-4-2	Using De Moivre's theorem evaluate the following in polar form and convert to rectangular form. a. $\quad\left(2 \angle 20^{\circ}\right)^{3}$

Section 2: Complex numbers - Exponential form \& De Moivre's theorem
b. $\quad\left(3 \angle-100^{\circ}\right)^{4}$
c. $(2+\mathrm{j} 3)^{6}$
d. $(-3-\mathrm{j} 4)^{5}$
e. $\quad(3 \angle-\pi / 3)^{2}$

Exponential form of sine and cosine

Above, we proved the important identity

$$
\cos \theta+j \sin \theta \equiv e^{j \theta}
$$

Remember that θ is measured in radians.

Putting θ equal to x and $=-x$ in the identity, we get:

$$
\begin{align*}
& \cos x+\mathrm{j} \sin x \equiv \mathrm{e}^{\mathrm{j} x} \tag{1}\\
& \cos x-\mathrm{j} \sin x \equiv \mathrm{e}^{-\mathrm{j} x} \\
& \text { (2). }
\end{align*}
$$

Adding (1) and (2) we obtain $2 \cos x \equiv \mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{j} x}$

$$
\text { Hence, } \quad \cos x \quad \equiv \frac{\mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{j} x}}{2}
$$

Subtracting (2) from (1) we obtain $2 \mathrm{j} \sin x \quad \equiv \mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}$

$$
\text { Hence, } \quad \sin x \quad \equiv \frac{\mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{j} x}}{2 \mathrm{j}}
$$

These two expressions may be taken as definitions of the circular functions, sine and cosine. They are very important in signal processing theory and should be remembered. To emphasise their importance, they are repeated below. x is of course measured in radians.

$\sin x \equiv \frac{\mathrm{e}^{\mathrm{j} x}-}{2 \mathrm{j}}$

As $1 / \mathrm{j}=-\mathrm{j}$, we can also write the expression for $\sin x$ as:

$$
\sin x \quad \equiv \mathrm{j}^{1 / 2}\left(\mathrm{e}^{-\mathrm{j} x}-\mathrm{e}^{\mathrm{j} x}\right)
$$

It should be appreciated that although $\sin x$ and $\cos x$ are defined in terms of complex numbers, that the sines and cosines of real numbers are real. Why is this so? You will recall from chapter 1 that the sum of a complex number and its conjugate is purely real. Also the difference of a complex number and its conjugate is purely imaginary.

We have seen that $\mathrm{e}^{\mathrm{j} x}$ and $\mathrm{e}^{-\mathrm{j} x}$ are complex conjugates.
$\therefore \mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{j} x}$ must be real, hence $1 / 2\left(\mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{j} x}\right)$ is real.
$\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}$ must be imaginary, hence $\frac{1}{2 \mathrm{j}}\left(\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}\right)$ is real.

SAQ2-4-3
Given that $\tan x \equiv \frac{\sin x}{\cos x}$

Write down expressions for $\tan x$ in terms of
a. $\quad \mathrm{e}^{\mathrm{j} x}$ and $\mathrm{e}^{-\mathrm{j} x}$
b. $\quad \mathrm{e}^{\mathrm{j} 2 x}$ and $\mathrm{e}^{-\mathrm{j} 2 x}$

Chapter 5

Roots of complex numbers

Roots of a complex number

We have seen that every real number has 2 square roots. For example, the square roots of 4 are $\pm \sqrt{ } 4= \pm 2$.

These roots are 180° apart, since multiplication by -1 represents a rotation of 180° (c.f. Section 1, chapter 1).

Similarly, every complex number (which includes the real numbers) has 2 square roots.

Consider the complex number $-5+\mathrm{j} 12$. This has the square roots $2+\mathrm{j} 3$ and -2-j3. Check:

$(2+\mathrm{j} 3)^{2}=2^{2}+(\mathrm{j} 3)^{2}+2 \times 2 \times \mathrm{j} 3=4-9 \mathrm{j} 12$	$=$	$-5+\mathrm{j} 12$
$(-2-\mathrm{j} 3)^{2}=(-2)^{2}+(-\mathrm{j} 3)^{2}+2 \times(-2) \times(-\mathrm{j} 3)=4-9+\mathrm{j} 12$	$=-5+\mathrm{j} 12$	

Note that these roots also are 180° apart, since each root is -1 times the other. ie the square roots of $-5+\mathrm{j} 12$ are $\pm(2+\mathrm{j} 3)$.

The 2 roots have the same modulus.

$$
\begin{aligned}
2+\mathrm{j} 3 & =3 \cdot 6 \angle 56 \cdot 3^{\circ} \\
-2-\mathrm{j} 3 & =3 \cdot 6 \angle\left(56 \cdot 3^{\circ}-180^{\circ}\right) \\
& =3 \cdot 6 \angle-123 \cdot 7^{\circ}
\end{aligned}
$$

The 2 square roots of any complex number have the same modulus and their angles are 180° apart.

This can be proved from De Moivre's theorem.

Consider the 2 numbers, $\quad z_{1}=r \angle \theta, \quad z_{2}=r \angle\left(\theta \pm 180^{\circ}\right)$, which have the same modulus, r, and are separated by 180°.
$z_{1}^{2}=r^{2} \angle 20, \quad z_{2}^{2}=r^{2} \angle\left(20 \pm 360^{\circ}\right) \quad$ by De Moivre.
Now, $\cos \left(\phi \pm 360^{\circ}\right)+\mathrm{j} \sin \left(\phi \pm 360^{\circ}\right) \equiv \cos \phi+\mathrm{j} \sin \phi$
Hence, $z_{1}{ }^{2}=z_{2}{ }^{2} . \quad \therefore z_{1}$ and z_{2} are both square roots of the same number.

Furthermore, since they have the same modulus, r, and there is a rotation of 180° between them; $z_{2}=-z_{1}$.
Finding the square root of a complex number

$$
(r \angle \theta)^{1 / 2}=r^{1 / 2} \angle 1 / 2 \theta
$$

Hence, $r^{1 / 2} \angle 1 / 2 \theta$ is a square root of $r \angle \theta$. This is called the principal value. The other root is the negative of this, which is $r^{1 / 2} \angle\left(1 / 2 \theta \pm 180^{\circ}\right)$. Whether we add or subtract 180° depends which gives us an angle in the conventional range of $-18<\theta \leq 180^{\circ}$.
a. Find the square roots of $9 \angle 60^{\circ}$

The principal root is $\sqrt{ } 9 \angle 1 / 2 \times 60^{\circ}=3 \angle 30^{\circ}=2 \cdot 6+\mathrm{j} 1 \cdot 5$
The other root is $3 \angle\left(30^{\circ}-180^{\circ}\right)=3 \angle-150^{\circ}=-2 \cdot 6-\mathrm{j} 1 \cdot 5$
In this instance, we subtract 180° giving -150°, rather than adding which would give 210°.

Hence the square roots are $\pm(2 \cdot 6+\mathrm{j} 1 \cdot 5)$.
b. Find the square roots of $-3+\mathrm{j} 4$

Converting to polar form, $-3+\mathrm{j} 4=5 \angle 126 \cdot 87^{\circ}$
The principal root is $\sqrt{ } 5 \angle 1_{1 / 2} \times 126 \cdot 87^{\circ}=2 \cdot 236 \angle 63 \cdot 43^{\circ}=1+\mathrm{j} 2$
The other root is $2 \cdot 236 \angle\left(63 \cdot 43^{\circ}-180^{\circ}\right)=2 \cdot 236 \angle-116 \cdot 57^{\circ}=-1-\mathrm{j} 2$
Hence the square roots of $-3+\mathrm{j} 4$ are $\pm(1+\mathrm{j} 2)$
c. Find the square roots of $-12-\mathrm{j} 35$

Converting to polar form, $-12-\mathrm{j} 35=37 \angle-108.92^{\circ}$
The principal root is $\sqrt{ } 37 \angle{ }^{1} 2 \times-108.92^{\circ}=6.08 \angle-54.46^{\circ}=3.54-\mathrm{j} 4.95$
The other root is $6 \cdot 08 \angle\left(-54 \cdot 46^{\circ}+180^{\circ}\right)=6 \cdot 08 \angle 125 \cdot 54^{\circ}=3 \cdot 54+\mathrm{j} 4 \cdot 95$
In this instance, we add 180° to give $125 \cdot 54^{\circ}$
Hence the square roots of $-12-\mathrm{j} 35$ are $\pm(3 \cdot 54-\mathrm{j} 4 \cdot 95)$.

It should be evident, by now, that we only need to find the principal value in rectangular form and multiply it by -1 to give the other root.
a. $25 \angle-120^{\circ}$
b. $5-\mathrm{j} 12$
c. $\quad-24-\mathrm{j} 70$
d. $\quad 6+\mathrm{j} 8$
e. -j 9

Further roots of Cube Roots
complex numbers

Finding the cube root of a complex number

Example

A complex number has 3 cube roots. They have the same modulus and are separated by $360^{\circ} \div 3=120^{\circ}$. Again, this can be proved by De Moivre's theorem.

$$
z_{1}=r \angle \theta, \quad z_{2}=r \angle\left(\theta+120^{\circ}\right), \quad z_{3}=r \angle\left(\theta-120^{\circ}\right)
$$

are 3 complex numbers of the same modulus, r, separated by 120°. By De Moivre's theorem:
$z_{1}{ }^{3}=r^{3} \angle 30$
$z_{2}{ }^{3}=r^{3} \angle\left(30+360^{\circ}\right)$
$z_{3}{ }^{3}=r^{3} \angle\left(30-360^{\circ}\right)$
Now, $\cos \left(\phi \pm 360^{\circ}\right)+\mathrm{j} \sin \left(\phi \pm 360^{\circ}\right) \equiv \cos \phi+\mathrm{j} \sin \phi$ hence, $z_{1}{ }^{3}=z_{2}{ }^{3}=z_{3}{ }^{3}$
$\therefore z_{1}, z_{2}, z_{3}$ are all cube roots of the same number.
Therefor, by De Moivre's theorem one cube root of $r \angle \theta$ is $r^{1 / 3} \angle \theta \div 3$.
The other 2 roots are $r^{1 / 3} \angle\left(\theta \div 3+120^{\circ}\right)$ and $r^{1 / 3} \angle\left(\theta \div 3-120^{\circ}\right)$.
a. Find the cube roots of $8 \angle 60^{\circ}$

One cube root is $8^{1 / 3} \angle 60^{\circ} \div 3=2 \angle 20^{\circ} \quad=1 \cdot 88+\mathrm{j} 0.68$
The other roots are $2 \angle\left(20^{\circ}+120^{\circ}\right)=2 \angle 140^{\circ} \quad=1 \cdot 53+\mathrm{j} 1 \cdot 29$

$$
\text { and } 2 \angle\left(20^{\circ}-120^{\circ}\right)=\underset{\sim}{2} \angle-100^{\circ} \quad=-0.35-\mathrm{j} 1.97
$$

The 3 cube roots are shown on the Argand diagram, each of magnitude 2, separated by angles of 120°.
nth root of a complex number

Example

It should now be clear that the complex number $r \angle \theta$ will have $n n$th roots each of modulus $r^{1 / n}$ separated by angles of $360^{\circ} \div n$. On the Argand diagram the roots will lie on a circle of radius $r^{1 / n}$, spaced equally around the circle at angular intervals of $360^{\circ} \div n$.

Find the four 4th roots of j .
Converting to polar form, $\mathrm{j}=1 \angle 90^{\circ}$
The principal 4th root is $1 \frac{1}{4} \angle 90^{\circ} \div 4=1 \angle 22 \cdot 5^{\circ} \quad=0 \cdot 924+\mathrm{j} 0 \cdot 383$
The other 3 roots are found by adding or subtracting multiples of $360 \div 4=90^{\circ}$. The other roots are:

$$
\begin{aligned}
& 1 \angle\left(22 \cdot 5^{\circ}+90^{\circ}\right)=1 \angle 112 \cdot 5^{\circ}=-0 \cdot 383+\mathrm{j} 0 \cdot 924 \\
& 1 \angle\left(22 \cdot 5^{\circ}-90^{\circ}\right)=1 \angle-67 \cdot 5^{\circ}=0 \cdot 383-\mathrm{j} 0 \cdot 924 \\
& 1 \angle\left(22 \cdot 5^{\circ}-180^{\circ}\right)=1 \angle-157 \cdot 5^{\circ}=-0 \cdot 924-\mathrm{j} 0 \cdot 384
\end{aligned}
$$

p301 f1g17
The roots are shown on the Argand diagram, lying on a circle of unit radius, spaced apart by 90°.

You may have spotted that the roots may be found by multiplying the rectangular form successively by j . This is, of course, because multiplication by j rotates by 90°.

Find the 3 cube roots of the following complex numbers and express the results in rectangular form.
a. $125 \angle-150^{\circ}$
b. $-610-\mathrm{j} 182$

SAQ2-5-3
Find the 3 cube roots of -1 in rectangular form and sketch them on the Argand diagram.

The characteristic impedance of a transmission line is given by:
$Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
Evaluate the principal value of Z_{0} where
$\mathrm{R}=5$ ohms, $\mathrm{G}=2 \times 20^{-6}$ siemens, $\mathrm{L}=10^{-5}$ henrys, $\mathrm{C}=3 \times 10^{-12}$ farads, $\omega=2 \pi \times 10^{6} \mathrm{rad} / \mathrm{s}$.

The propagation coefficient of a transmission line is defined as

$$
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}
$$

Evaluate the principal value of γ where $\mathrm{R}=50, \mathrm{~L}=0 \cdot 0004, \mathrm{C}=2 \times 10^{-12}$, G is negligible, $\omega=2 \pi \times 16000$

Chapter 6

Equating parts

Equating real and imaginary parts

Example

In chapter 1 we saw that the real and imaginary numbers coincide only at zero. A real number has no imaginary part and an imaginary number has no real part. This enables us to equate the real and imaginary parts of complex numbers.

$$
\begin{array}{cc}
\text { If } & a+\mathrm{j} b \\
\text { then } & a=c \quad c \quad c+\mathrm{j} d \\
\text { and } \quad b=d
\end{array}
$$

ie 2 complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal.

It follows that if $a+\mathrm{j} b=0$, then $a=0$ and $b=0$.

Thus an equation in a complex variable is actually 2 equations in one. This process has particular applications in circuit theory where we have 2 quantities which are in quadrature and we can solve for both at once.

Find a and b in the equation

$$
\frac{a+2}{2 a+\mathrm{j} b} \quad=\quad 1-\mathrm{j} 3
$$

Multiplying both sides by $2 a+\mathrm{j} b$;

$$
\begin{aligned}
a+2 & =(2 a+\mathrm{j} b)(1-\mathrm{j} 3) \\
a+2 & =2 a+3 b-6 \mathrm{j} a+\mathrm{jb} \\
2 & =a+3 b+\mathrm{j}(-6 a+b)
\end{aligned}
$$

Hence, $a+3 b=2$ and $-6 a+b=0$
Solving this pair of simultaneous equations gives $a=2 / 19, \quad b=12 / 19$.

SAQ2-6-1	If $(a+\mathrm{j} b)^{2}+b^{2}=4+\mathrm{j} 12$ where a is positive, find a and b.
SAQ2-6-2	
The condition for balance of a 4 arm bridge is	
$\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}=\frac{\mathrm{Z}_{3}}{\mathrm{Z}_{4}}$	
If $Z_{1}=\mathrm{R}_{x}-\mathrm{j} /\left(\omega \mathrm{C}_{x}\right)$	
$Z_{2}=0 \cdot 1-\mathrm{j} /\left(\omega 3 \cdot 5 \times 10^{-6}\right)$	
$Z_{3}=24$	
$Z_{4}=50$	

Find the values of R_{x} and C_{x}

Chapter 7

Complex roots of equations

Quadratic equations	Section 1, chapter 4 discussed the real roots of quadratic equations. You will recall that a quadratic equation is of the form $a x^{2}+b x+c=0$ and has 2 roots which are given by $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
Example	You will also recall that the expression $b^{2}-4 a c$ is called the discriminant and that if the discriminant is negative it has no real square root. Thus, even if the coefficients a, b and c are real, the equation has no real solution. However, we know that the square root of a negative real number may be expressed as an "imaginary" number, and so such an equation has a complex solution.
	Solve the equation $x^{2}-4 x+13=0$ Applying the formula:
	$x=\frac{4 \pm \sqrt{ }\left(4^{2}-4 \times 1 \times 13\right)}{2 \times 1}$
	$=\frac{4 \pm \sqrt{(16-52)}}{2}$
	$=\frac{4 \pm \sqrt{ }-36}{2}$
	$=\frac{4 \pm \mathrm{j} 6}{2}=2 \pm \mathrm{j} 3$

Thus the 2 roots are $2+\mathrm{j} 3$ and $2-\mathrm{j} 3$. It is evident that if the roots are complex, then they will be complex conjugates.

We can state as a rule:

$$
\begin{aligned}
& \text { The equation } a x^{2}+b x+c=0 \\
& \text { where } a, b, c \text { are real numbers, } \\
& \text { has complex conjugate roots if } b^{2}-4 a c<0
\end{aligned}
$$

SAQ2-7-1

SAQ2-7-2

Solve the quadratic equation

$$
2 x^{2}+12 x+50=0
$$

Solve the following quadratic equation, expressing the roots to 2 decimal places.

$$
3 x^{2}-4 x+2=0
$$

Complex factors

Example

Example

In Section 1, chapter 3, we also saw that a quadratic expression may be resolved into 2 linear factors. This is restated below.

$$
a x^{2}+b x+c \equiv a(x-\alpha)(x-\beta)
$$

where α, β are the roots of the quadratic equation $a x^{2}+b x+c=0$

If the roots, α, β are complex, then the factors are complex.
Factorize $\quad x^{2}+4 x+13$
$x^{2}+4 x+13 \equiv(x-\alpha)(x-\beta)$
where α, β are the roots of $x^{2}+4 x+13=0$
Hence, $\alpha, \beta=\frac{-4 \pm \sqrt{ }(16-52)}{2}=\frac{-4 \pm \sqrt{ }-36}{2}$

$$
=\frac{-4 \pm \mathrm{j} 6}{2}=-2 \pm \mathrm{j} 3
$$

Therefore the factors are $\quad\{x-(-2+\mathrm{j} 3)\}\{x-(-2-\mathrm{j} 3)\}$

$$
=(x+2-\mathrm{j} 3)(x+2+\mathrm{j} 3)
$$

Factorize $\quad 4 x^{2}-4 x+5$
$4 x^{2}-4 x+5 \equiv 4(x-\alpha)(x-\beta)$
where α, β are the roots of $4 x^{2}-4 x+5=0$
Hence, $\alpha, \beta=\frac{4 \pm \sqrt{(16-80)}}{8}=\frac{4 \pm \sqrt{ }-64}{8}$

$$
=\frac{4 \pm \mathrm{j} 8}{8}=1 / 2 \pm \mathrm{j}
$$

Hence factors are $4(x-1 / 2-\mathrm{j})(x-1 / 2+\mathrm{j})$

$$
\begin{aligned}
& =\quad 2(x-1 / 2-\mathrm{j}) 2(x-1 / 2+\mathrm{j}) \\
& =\quad(2 x-1-\mathrm{j} 2)(2 x-1+\mathrm{j} 2)
\end{aligned}
$$

SAQ2-7-3
Resolve into complex factors
a. $\quad x^{2}-10 x+26$
b. $9 x^{2}-12 x+13$
c. $\quad 2 x^{2}+8$

Factors of higher polynomials

Cubic functions

The above principles may be extended to polynomials of higher degree. For example, consider a third degree (cubic) polynomial.
$a x^{3}+b x^{2}+c x+d \equiv a(x-\alpha)(x-\beta)(x-\gamma)$
where α, β, γ are the roots of $a x^{3}+b x^{2}+c x+d=0$
A cubic equation always has at least one real root. The other 2 are either both real (unequal or equal) or are both complex (conjugate).

p361 fig19

p361 fig2!

Similarly, a fourth degree polynomial has 4 linear factors which may be all real, all complex, or 2 real and 2 complex. The complex roots always occur in conjugate pairs.

Polynomials of degree n	In general, a polynomial of the $n^{\text {th }}$ degree has n linear factors, ie If P_{n} is a polynomial of degree n with real coefficients. $\begin{aligned} \mathrm{P}_{n} & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \cdots+a_{n} x^{n} \\ & \equiv a_{n}(\underbrace{x-\alpha)(x-\beta)(x-\gamma)(x-\delta)(x-\varepsilon) \cdots \cdots(x-\zeta)}_{n \text { factors }} \end{aligned}$ where $\alpha, \beta, \gamma, \delta, \varepsilon,+\cdots \cdots, \zeta$, are the n roots of the equation $\mathrm{P}_{n}=0$ which may be real or complex. Complex roots always occur in conjugate pairs. If n is odd, then at least one root is real. If any of the roots are equal then the corresponding factor is repeated. Such a root is called a repeated root. Repeated roots are always real. The graph will touch the x axis without crossing, at a repeated root.
Example	There are occasions in the study of networks where we may wish to resolve a polynomial into real and/or imaginary factors. The solution of polynomial equations higher than quadratics is very difficult, and equations of degree higher than 4 can usually only be solved by numerical methods on a computer. Such methods will be used later on your course.
	If some of the roots are known, it may be possible to extract the others by division. The third degree polynomial $x^{3}-8 x^{2}+37 x-50$ has one real factor $(x-2)$ and 2 complex factors. Find all the factors.
	Applying algebraic division (refer Section 1 chapter 4. $\begin{array}{r} \frac{x^{2}-6 x+25}{x^{3}-8 x^{2}+37 x-50} \\ \frac{x^{3}-2 x^{2}}{-6 x^{2}}+37 x-50 \\ \frac{-6 x^{2}+12 x}{25 x}-50 \\ \underline{25 x-50} \end{array}$

There is no remainder, hence $x^{3}-8 x^{2}+37 x-50 \equiv(x-2)\left(x^{2}-6 x+25\right)$
Now $x^{2}-6 x+25 \equiv(x-\alpha)(x-\beta)$
where α, β are the roots of $x^{2}-6 x+25=0 . \therefore \alpha, \beta=\frac{6 \pm \sqrt{ }(36-100)}{2}$

$$
=3 \pm \mathrm{j} 4
$$

Hence, $x^{3}-8 x^{2}+37 x-50 \equiv(x-2)(x-3-\mathrm{j} 4)(x-3+\mathrm{j} 4)$

Example
The equation $x^{4}+8 x^{3}+23 x^{2}+30 x+18=0$ has a repeated root at $x=-3$ and 2 complex roots. By division and solving the quadratic equation, find all the roots.

If -3 is a repeated root, then $(x+3)(x+3)$ must be factors.
Dividing the polynomial by $(x+3)^{2}$,

$$
\begin{array}{r}
x^{2}+6 x+9 \\
\frac{x^{2}+2 x+2}{x^{4}+8 x^{3}+23 x^{2}+30 x+18} \\
\frac{x^{4}+6 x^{3}+9 x^{2}}{2 x^{3}+14 x^{2}+30 x+18} \\
\frac{2 x^{3}+12 x^{2}+18 x}{2 x^{2}+12 x+18} \\
\underline{2 x^{2}+12 x+18}
\end{array}
$$

Hence $x^{4}+8 x^{3}+23 x^{2}+30 x+18 \equiv(x+3)^{2}(x+2 x+2)$
Now, $x^{2}+2 x+2=0$ has the roots

$$
\frac{-2 \pm \sqrt{ }(4-8)}{2}=\frac{-2 \pm \sqrt{ }(-4)}{2}=-1 \pm \mathrm{j}
$$

Hence the roots are $x=-3,-3,-1+\mathrm{j},-1-\mathrm{j}$.
A sketch of the graph is shown below for interest. Note that the graph touches the x axis at the repeated root.

SAQ2-7-4 The cubic polynomial $x^{3}+3 x^{2}+9 x-13$ has one real factor $(x-1)$ and 2 complex factors. Find all the factors and so write down the complete factorized expression.

Chapter 8

Solutions to SAQs

b.

a. $\quad z_{1}=2+\mathrm{j} 6$
b. $\quad z_{2}=5-\mathrm{j} 2$
c. $-z_{2}=-5+\mathrm{j} 2$
d. $z_{1}+z_{2}=7+\mathrm{j} 4$
e. $z_{1}-z_{2}=-3+\mathrm{j} 8$

Solutions to SAQs

SAQ2-2-2

 Continued

It can be seen that the vector $z_{1}+z_{2}$ is the diagonal of the parallelogram constructed with z_{1} and z_{2}.

Similarly $z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)$ is the diagonal of the parallelogram constructed with z_{1} and $-z_{2}$.

This shows that the 2 methods give the same results.
Note that $-z_{2}$ may be constructed by rotating z_{2} through 180°.

z_{1}	z_{2}	$z_{1} z_{2}$
$5+\mathrm{j} 2$	$3+\mathrm{j} 4$	$7+\mathrm{j} 26$
$-3+\mathrm{j} 7$	$6+j 8$	$-74+\mathrm{j} 18$
-4-j	$5+\mathrm{j} 2$	$-18-\mathrm{j} 13$
$12+\mathrm{j} 7$	$9-\mathrm{j}$	$115+\mathrm{j} 51$
$3-\mathrm{j} 2$	-4-j5	-22-j7
$-8-\mathrm{j} 3$	$-3-\mathrm{j} 5$	$9+\mathrm{j} 49$
$1 / 2+j^{\sqrt{3} / 2}$	$1 / 2+\mathrm{j}^{\sqrt{3} / 2}$	$-1 / 2+j^{\sqrt{3} / 2}$

SAQ2-2-5
a.

b. $\quad z_{2}=\mathrm{j} z_{1}=-7+\mathrm{j} 5$
c. The angle is 90° from z_{1} to z_{2}, illustrating that multiplying any complex number by j gives a rotation of $+90^{\circ}$.
d. $\quad z_{3}=-\mathrm{j} z_{1}=7-\mathrm{j} 5$
e. The angle is -90° (clockwise) from z_{1} to z_{3}, illustrating that multiplying any complex number by -j gives a rotation of -90°.

The angle between z_{2} and z_{3} is 180°, since $z_{3}=-z_{2}$, showing that a rotation of 180° gives the negative of a number.

\boldsymbol{z}	\boldsymbol{z}^{*}	$\boldsymbol{z}+\boldsymbol{z}^{*}$	$\boldsymbol{z} \boldsymbol{z}^{*}$
$4+\mathrm{j} 6$	$4-\mathrm{j} 6$	8	52
$3-\mathrm{j} 7$	$3+\mathrm{j} 7$	6	58
$-2+\mathrm{j} 5$	$-2-\mathrm{j} 5$	-4	29
$-9-\mathrm{j} 12$	$-9+\mathrm{j} 12$	-18	225
$2-\mathrm{j} \sqrt{ } 3$	$2+\mathrm{j} \sqrt{ } 3$	4	7
$1 / \sqrt{ } 2+\mathrm{j} / \sqrt{ } 2$	$1 / \sqrt{ } 2-\mathrm{j} / \sqrt{ } 2$	$\sqrt{ } 2$	1
$-1 / 2-\mathrm{j}^{\sqrt{3} / 2}$	$-1 / 2+\mathrm{j}^{\sqrt{3} / 2}$	-1	1

SAQ2-2-6	$-z^{*}$ represents a reflection in the imaginary axis.
SAQ2-2-7	a. $\frac{3+\mathrm{j} 8}{1+\mathrm{j}}=\frac{(3+\mathrm{j} 8)(1-\mathrm{j})}{(1+\mathrm{j})(1-\mathrm{j})}=\frac{11+\mathrm{j} 5}{2}=5 \cdot 5+\mathrm{j} 2 \cdot 5$
	b. $\frac{5-\mathrm{j} 6}{6-\mathrm{j} 8}=\frac{(5-\mathrm{j} 6)(6+\mathrm{j} 8)}{(6-\mathrm{j} 8)(6+\mathrm{j} 8)}=\frac{78+\mathrm{j} 4}{100}=0 \cdot 78+\mathrm{j} 0 \cdot 04$
	c. $\frac{-8-\mathrm{j} 7}{-7-j}=\frac{(-8-\mathrm{j} 7)(-7+\mathrm{j})}{(-7-\mathrm{j})(-7+\mathrm{j})}=\frac{63+\mathrm{j} 41}{50}=1 \cdot 26+\mathrm{j} 0 \cdot 82$
	d. $\frac{10}{2+j}=\frac{10(2-\mathrm{j})}{(2+\mathrm{j})(2-\mathrm{j})}=\frac{20-\mathrm{j} 10}{5}=4-\mathrm{j} 2$
	$\text { e. } \begin{aligned} & \frac{1}{R+j \omega L}=\frac{R-j \omega L}{(R+j \omega L)(R-j \omega L)}=\frac{R-j \omega L}{R^{2}+\omega^{2} L^{2}} \\ \frac{R}{R^{2}+\omega^{2} L^{2}} & -j \frac{\omega L}{R^{2}+\omega^{2} L^{2}} \end{aligned}$
SAQ2-2-8	$Z=(1000+\mathrm{j} 250)+(2200-\mathrm{j} 750)+(300-\mathrm{j} 125)$ ohms
	+ $3500-\mathrm{j} 625$ ohms.

Solutions to SAQs

Solutions to SAQs

Solutions to SAQs

Solutions to SAQs

b. $\quad z=-\sqrt{ } 3+j$
$r=\sqrt{(-\sqrt{3})^{2}+1^{2}}=2$
$\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi 6 . \quad \theta$ lies between $\pi / 2$ and π.
$\therefore \theta=-\pi / 6+\pi=5 \pi / 6$

Hence $z=2 \angle 5 \pi / 6$
c. $\quad z=-2-\mathrm{j} 2 \sqrt{ } 3$
$r=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}}=4$
$\tan ^{-1}(\sqrt{ } 3)=\pi / 3 . \quad \theta$ lies between $-\pi / 2$ and π.
$\therefore \theta=\pi / 3-\pi=-2 \pi / 3$

Hence, $z=4 \angle-2 \pi / 3$

SAQ2-3-4
a. $\quad 5 \angle 32^{\circ}=\left(\cos 32^{\circ}+\mathrm{j} \sin 32^{\circ}\right)$
$=5(0 \cdot 8480+\mathrm{j} 0 \cdot 5299)=4 \cdot 24+\mathrm{j} 2 \cdot 65$
b. $\quad 6 \cdot 2 \angle 140^{\circ}=6 \cdot 2\left(\cos 140^{\circ}+\mathrm{j} \sin 140^{\circ}\right)$
$=6 \cdot 2(-0.7660+\mathrm{j} 0.6428)=-4.75+\mathrm{j} 3.99$
c. $\quad 0 \cdot 8 \angle-155^{\circ}=0 \cdot 8\left(\cos -155^{\circ}+\mathrm{j} \sin -155^{\circ}\right)$
$=0 \cdot 8(-0 \cdot 9063-\mathrm{j} 0 \cdot 4226)=-0 \cdot 73-\mathrm{j} 0 \cdot 34$
d. $\quad 4 \cdot 9 \angle-20^{\circ}=4 \cdot 9\left(\cos -20^{\circ}+\mathrm{j} \sin -20^{\circ}\right)$
$=4 \cdot 9(0.9397-\mathrm{j} 0.3420)=4.60-\mathrm{j} 1.68$
e. $3 \angle \pi / 4=3(\cos \pi / 4+\mathrm{j} \sin \pi / 4)$
$=3(0 \cdot 7071+\mathrm{j} 0 \cdot 7071)=2 \cdot 12+\mathrm{j} 2 \cdot 12$

a.	$\left(2 \angle 20^{\circ}\right)^{3}$	$=2^{3} \angle 3 \times 20^{\circ}$	$=$	$8 \angle 60^{\circ}$	=	$4 \cdot 00+\mathrm{j} 6 \cdot 93$
b.	$\left(3 \angle-100^{\circ}\right)$	$=3^{4} \angle 4 \times-100^{\circ}$	$=$	$81 \angle-400^{\circ}$	$=$ $=$	$\begin{aligned} & 81 \angle-40 \\ & 62 \cdot 05-\mathrm{j} 52 \cdot 07 \end{aligned}$
c.	$(2+j 3)^{6}$	$\begin{aligned} & =\quad(3.606 \angle 5 \\ & =\quad 2197 \angle 33 \end{aligned}$	$\begin{aligned} & 6 \cdot 31 I) \\ & 7 \cdot 86^{\circ} \end{aligned}$		$=$ $=$ $=$	$\begin{aligned} & 3 \cdot 6-6^{6} \angle 6 \times 56 \cdot 31^{\circ} \\ & 2197 \angle-22 \cdot 14^{\circ} \\ & 2035-\mathrm{j} 828 \end{aligned}$
d.	$(-3-j 4)^{5}$	$\begin{aligned} & =\quad(5 \angle-126 \cdot \\ & =\quad 3125 \angle-6 \end{aligned}$	$\begin{aligned} & \left.87^{0}\right)^{5} \\ & 34 \cdot 35^{\circ} \end{aligned}$		$=$ $=$ $=$	$\begin{aligned} & 5^{5} \angle 5 \mathrm{a}-126 \cdot 87 \\ & 3125 \angle 85 \cdot 65^{\circ} \\ & 237+\mathrm{j} 3116 \end{aligned}$
e.	$(3 \angle-\pi / 3)^{2}$	$={ }^{3} 2 \angle 2 \times-\pi / 3$			$=$ $=$	$\begin{aligned} & 9 \angle-2 \pi / 3 \\ & -4.5-\mathrm{j} 7.79 \end{aligned}$

SAQ2-4-3

$$
\begin{aligned}
\tan x & \equiv \frac{\sin x}{\cos x} \\
& \equiv \frac{\frac{1}{2 j}\left(\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{jx}}\right)}{1 / 2\left(\mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{jx} x}\right)}
\end{aligned}
$$

$$
\equiv \quad \frac{\left(\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}\right)}{\mathrm{j}\left(\mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-\mathrm{j} x}\right)}
$$

$$
\equiv \frac{j\left(e^{-j x}-e^{j x}\right)}{\left(\mathrm{e}^{j x}+\mathrm{e}^{-\mathrm{j} x}\right)} \quad \text { Since } 1 / \mathrm{j}=-\mathrm{j}
$$

$$
\equiv \frac{\mathrm{j}\left(1-\mathrm{e}^{2 j x}\right)}{\left(1+\mathrm{e}^{2 j x}\right)} \quad \text { multiplying top and bottom by } \mathrm{e}^{\mathrm{j} x}
$$

Solutions to SAQs

a. \quad Principal root $=25^{1 / 2} \angle-120^{\circ} \div 2=5 \angle-60^{\circ}$ $=2 \cdot 5-\mathrm{j} 4 \cdot 33$

Hence square roots are $2 \cdot 5-\mathrm{j} 4 \cdot 33$ and $-2 \cdot 5+\mathrm{j} 4 \cdot 33$
b. $4-\mathrm{j} 12=13 \angle-67 \cdot 38^{\circ}$

Principal square root is $13^{1 / 2} \angle-67 \cdot 38^{\circ} \div 2=3 \cdot 606 \angle-33 \cdot 69$
$=3-\mathrm{j} 2$
Hence, square roots are $3-\mathrm{j} 2$ and $-3+\mathrm{j} 2$
c. $-24-\mathrm{j} 70=74 \angle-108 \cdot 92^{\circ}$

Principal square root is $74^{1 / 2} \angle-108.92^{\circ} \div 2=8.602 \angle-54 \cdot 46^{\circ}$

$$
=5-\mathrm{j} 7
$$

Hence, square roots are $5-\mathrm{j} 7$ and $-5+\mathrm{j} 7$
d. $6+\mathrm{j} 8=10 \angle 53 \cdot 13^{\circ}$

Principal square root is $10^{1 / 2} \angle 53 \cdot 13^{\circ} \div 2=3 \cdot 162 \angle 26 \cdot 57^{\circ}$

$$
=\quad 2 \cdot 828+\mathrm{j} 1 \cdot 414
$$

Hence, square roots are $2.828+\mathrm{j} 1.414$ and $-2.828-\mathrm{j} 1.414$
e. $-\mathrm{j} 9=9 \angle-90^{\circ}$

Principal square root is $9^{1 / 2} \angle-90^{\circ} \div 2=3 \angle-45^{\circ}$ $=\quad 2 \cdot 121-\mathrm{j} 2 \cdot 121$

Hence, square roots are $2 \cdot 121-\mathrm{j} 2 \cdot 121$ and $-2 \cdot 121+\mathrm{j} 2 \cdot 121$

SAQ2-5-2

SAQ2-5-3
a. One cube root is $125^{1 / 3} \angle-150^{\circ} \div 3$

$$
=5 \angle-50^{\circ} \quad=3 \cdot 21-\mathrm{j} 3.83
$$

The other roots are $5 \angle\left(-50^{\circ}+120^{\circ}\right)=5 \angle 70^{\circ}=1 \cdot 71+\mathrm{j} 4 \cdot 70$ and $5 \angle\left(-50^{\circ}-120^{\circ}\right)=5 \angle-170^{\circ}=-4.92-\mathrm{j} 0 \cdot 87$
b. $-610-\mathrm{j} 182=636 \cdot 57 \angle-163 \cdot 39^{\circ}$

One cube root is $\quad 636 \cdot 57^{1 / 3} \angle-163 \cdot 39^{\circ} \div 3=8 \cdot 602 \angle-54 \cdot 46^{\circ}$

$$
=\quad 5-\mathrm{j} 7
$$

The other roots are $\quad 8.602 \angle\left(-54 \cdot 46^{\circ}+120^{\circ}\right)=8 \cdot 602 \angle 65 \cdot 54^{\circ}$

$$
=\quad 3.56+\mathrm{j} 7.83
$$

$$
\text { and } 8 \cdot 602 \angle\left(-54 \cdot 46^{\circ}-120^{\circ}\right)=8 \cdot 602 \angle-174 \cdot 46^{\circ}
$$

$$
=8.56-\mathrm{j} 0.83
$$

One cube root is $\quad 1^{1 / 3} \angle 180^{\circ} \div 3=1 \angle 60^{\circ}=1 / 2+\mathrm{j}$

$$
=0 \cdot 5+\mathrm{j} 0 \cdot 866
$$

The other cube roots are $\quad 1 \angle\left(60^{\circ}+120^{\circ}\right)=1 \angle 180^{\circ}=-1$ and $\quad 1 \angle\left(60^{\circ}-120^{\circ}\right)=1 \angle-60^{\circ}=1 / 2+\mathrm{j} \frac{\sqrt{3}}{2}$
$=0 \cdot 5-\mathrm{j} 0 \cdot 866$

Solutions to SAQs

SAQ2-5-4

SAQ2-5-5

$$
Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

Substituting in the figures:
$\mathrm{R}+\mathrm{j} \omega \mathrm{L}=5+\mathrm{j} 62 \cdot 83=63.03 \angle 85 \cdot 45^{\circ}$
$\mathrm{G}+\mathrm{j} \omega \mathrm{C}=(2+\mathrm{j} 18.85) \times 10^{-6}=18.96 \times 10^{-6} \angle 83.94^{\circ}$
$\frac{R+j \omega L}{G+j \omega C}=\frac{63.03 \angle 85.45^{\circ}}{18.96 \times 10^{-6} \angle 83 \cdot 94^{\circ}}=3.324 \times 10^{6} \angle 1.51^{\circ}$

$=1823+\mathrm{j} 24$ ohms.
$\gamma \sqrt{(R+j \omega L)(G+j \omega C)}$
Substituting in the figures

$$
\begin{aligned}
& R+j \omega L \quad=\quad 50+j 40 \cdot 21 \\
& \begin{aligned}
G+j \omega \quad= & j 2.011
\end{aligned} \begin{aligned}
& \times 10^{-7} \\
(R+j \omega L)(G+j \omega C) & = \\
& =\left(-82.011 \times 10^{-7}(50+j 40 \cdot 21)\right. \\
& =12.90 \times 10^{-6} \angle 128 \cdot 8^{\circ}
\end{aligned}
\end{aligned}
$$

$$
\therefore \gamma=\quad \sqrt{ } 12.90 \times 10^{-6} \angle 128.8^{\circ} \div 2=3.59 \times 10^{-3} \angle 64 \cdot 4^{\circ}
$$

$$
=\quad(1.55+\mathrm{j} 3 \cdot 24) \times 10^{-3}
$$

Solutions to SAQs

SAQ2-6-1

SAQ2-6-2

$$
\begin{aligned}
& (a+\mathrm{j} b)^{2}+b^{2} \\
& =\quad a^{2}-b^{2}+2 a \mathrm{j} b+b^{2} \\
& =\quad a^{2}+\mathrm{j} 2 a b
\end{aligned}
$$

Hence, $a^{2}+\mathrm{j} 2 a b=4+\mathrm{j} 12$
Equating parts: $\quad a^{2}=4$

$$
2 a b=12
$$

Since a is positive, $\quad a=2$.
Substituting in the second equation gives $b=3$.

$$
\begin{aligned}
\therefore \mathrm{R}_{x}-\mathrm{j} /\left(\omega \mathrm{C}_{x}\right) & =0.48\left\{0 \cdot 1-\mathrm{j} /\left(\omega 3 \cdot 5 \times 10^{-6}\right)\right\} \\
& =0 \cdot 048-\mathrm{j} 0 \cdot 48 /\left(\omega 3 \cdot 5 \times 10^{-6}\right)
\end{aligned}
$$

Equating real parts: $\quad \mathrm{R}_{x}=0.048$
Equating imaginary parts; $\quad 1 /\left(\omega \mathrm{C}_{x}\right)=0 \cdot 48 /\left(\omega 3 \cdot 5 \times 10^{-6}\right)$
giving

$$
\begin{aligned}
\mathrm{C}_{x} & =3.5 \times 10^{-6} \div 0.48 \\
& =7.3 \times 10^{-6}
\end{aligned}
$$

Solutions to SAQs

SAQ2-7-1

SAQ2-7-2

SAQ2-7-3

$$
2 x^{2}+12 x+50=0
$$

Applying the formula for solution of quadratic equations;

$$
\begin{aligned}
& x=\frac{-12 \pm \sqrt{ }\left(12^{2}-4 \times 2 \times 50\right)}{2 \times 2} \\
& =\frac{-12 \pm \sqrt{ }-256}{4} \\
& =\frac{-12 \pm \mathrm{j} 16}{4}=-3 \pm \mathrm{j} 4
\end{aligned}
$$

Hence, the roots are $-3+\mathrm{j} 4$ and $-3-\mathrm{j} 4$.

$$
\begin{aligned}
& 3 x^{2}-4 x+2=0 \\
& x=\frac{4 \pm \sqrt{ }\left[(-4)^{2}-4 \times 3 \times 2\right]}{2 \times 3} \\
& =\frac{4 \pm \sqrt{ }-8}{6}=\frac{4 \pm 2 \sqrt{ }-2}{6} \\
& =2 / 3 \pm \mathrm{j}^{1 / 3} \sqrt{ } 2=0.67 \pm \mathrm{j} 0.47
\end{aligned}
$$

Hence, the roots to 2 decimal places are $0.67+\mathrm{j} 0.47$ and $0.67-\mathrm{j} 0.47$
a. $\quad x^{2}-10 x+26 \equiv(x-\alpha)(x-\beta)$
where α, β are the roots of $x^{2}-10 x+26=0$.
Hence, $\alpha, \beta=\frac{10 \pm \sqrt{ }\left[(-10)^{2}-4 \times 1 \times 26\right]}{2 \times 1}$

$$
\begin{aligned}
& =\frac{10 \pm \sqrt{ }-4}{2}=\frac{10 \pm \mathrm{j} 2}{2} \\
& =5 \pm \mathrm{j}
\end{aligned}
$$

Hence, $x^{2}-10 x+26 \equiv(x-5-\mathrm{j})(x-5+\mathrm{j})$
b. $9 x^{2}-12 x+13 \equiv 9(x-\alpha)(x-\beta)$
where α, β are the roots of $9 x^{2}-12 x+13=0$.

$$
\text { Hence, } \begin{aligned}
\alpha, \beta & =\frac{12 \pm \sqrt{ }\left[(-12)^{2}-4 \times 9 \times 13\right]}{2 \times 9} \\
& =\frac{12 \pm \sqrt{ }-324}{18} \\
& =\frac{12 \pm \mathrm{j} 18}{18}=\quad 2 / 3 \pm \mathrm{j}
\end{aligned}
$$

Hence, $9 x^{2}-12 x+13 \equiv 9(x-2 / 3-\mathrm{j})(x-2 / 3+\mathrm{j})$

$$
=\quad(3 x-2-j 3)(3 x-2+j 3)
$$

c. $2 x^{2}+8 \equiv 2(x-\alpha)(x-\beta)$
where α, β are the roots of $2 x^{2}+8=0$.

$$
2\left(x^{2}+4\right)=0 \quad \therefore x^{2}+4=0 \quad \therefore x^{2}=-4
$$

The roots are $\pm \mathrm{j} 2$
Hence $2 x^{2}+8 \equiv 2(x-\mathrm{j} 2)(x+\mathrm{j} 2)$

$$
x^{3}+3 x^{2}+9 x-13 \quad \equiv \quad(x-1)\left(a x^{2}+b x+c\right)
$$

Dividing $x^{3}+3 x^{2}+9 x-13$ by $x-1$

$$
\begin{array}{r}
\frac{x^{2}+4 x+13}{x^{3}+3 x^{2}+9 x-13} \\
\frac{x^{3}-x^{2}}{4 x^{2}}+9 x-13 \\
\underline{4 x^{2}-4 x} \\
13 x-13 \\
\underline{13 x-13}
\end{array}
$$

Hence, $x^{3}+3 x^{2}+9 x-13 \equiv(x-1)\left(x^{2}+4 x+13\right)$

$$
\equiv \quad(x-1)(x-\alpha)(x-\beta)
$$

Where $\alpha, \beta=\frac{-4 \pm \sqrt{ }\left(4^{2}-4 \times 1 \times 13\right)}{2 \times 1}$

$$
\begin{aligned}
& =\frac{-4 \pm \sqrt{ }-36}{2} \quad=\frac{-4 \pm j 6}{2} \\
& =-2 \pm j 3
\end{aligned}
$$

Hence, $x^{3}+3 x^{2}+9 x-13 \equiv(x-1)(x+2-\mathrm{j} 3)(x+2+\mathrm{j} 3)$

[^0]: Example

 SAQ2-3-1
 e. Convert $6 \angle-2 \pi / 3$ to rectangular form.

 It should be remembered that angles are always assumed to be in radians unless otherwise specified. eg $\angle 2^{\circ}$ means 2 degrees, but $\angle 2$ means 2 radians.

 $$
 \begin{aligned}
 6 \angle-2 \pi / 3 & =6(\cos (-2 \pi / 3)+\mathrm{j} \sin (-2 \pi / 3)) \\
 & =6(-0 \cdot 5-\mathrm{j} 0 \cdot 866) \\
 & =-3-\mathrm{j} 5 \cdot 196
 \end{aligned}
 $$

 Convert the following complex numbers to the polar form, $r \angle \theta$, expressing θ in degrees correct to one decimal place.
 a. $6+\mathrm{j} 8$
 b. $-7+\mathrm{j} 5$
 c. $-2 \cdot 5-\mathrm{j} 3 \cdot 6$
 d. $\quad 5-\mathrm{j} 12$

