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Imaginary
numbers

We saw in Section 1, chapter 1 that the Real numbers consist of rational and
irrational numbers and can be represented graphically by points on a line.  We also
saw that certain equations have no solution amongst the real numbers.
For example  x2  =  �1  has no real solution since multiplying any number, positive
or negative, by itself gives a positive result.  In order to provide solutions to such
problems, the number system was extended and the so-called imaginary numbers
were conceived.

We define a number  j  such that  j2  =  �1.  Note that in pure mathematics texts,  i
is used.  In electrical engineering we use  j  so as not to cause confusion with the
symbol for current.  j is called an imaginary number

The term "imaginary" is perhaps an unfortunate one since it implies that imaginary
numbers have no actual meaning.  However, all numbers such as negative numbers
and irrational numbers were originally an extension of the number system,
necessary for the solution of new problems, and were therefore "imagined" by
someone.  We are all perfectly familiar with everyday applications of fractions and
negative numbers,. and as we shall see, imaginary numbers also have practical
physical interpretations.

The
j operator

It is obvious that j does not fit anywhere on our Real Line.  You will recall from
Section 1 that multiplication by �1 gives a rotation of 180º.  Since  j2  =  �1,  it
seems reasonable to assume that a multiplication by j gives a rotation of 90º.
Multiplication by j again, ie by  j2  =  �1  gives a further 90º rotation to 180º,
bringing us back on to the Real Line at �1.

j as a rotational operator

Multiplying �1 by  j  gives a further 90º rotation indicating that multiplying 1 by �j

Multiplication by j rotates by 90º

1×j = j

-j×j = 1-1×j = �j

j×j = �1

Rotation of
90º

Rotation of
90º

Rotation of
90º

Rotation of
90º

Real →1�1

-j

j

0

•

•
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would give a rotation of 90º clockwise ie �90º.  Multiplying �j by j again brings us
back to 1.

Thus we can see that 1 × j  = j rotation of 90º from 1
j × j  = �1 rotation of 180º from 1

�1 × j  = �j rotation of 270º or �90º from 1
�j × j  = 1 rotation of 360° or 0º from 1

Thus the imaginary number j may be regarded as a rotational operator.  This has
useful applications to AC circuit theory where a quantity such as a voltage which
is in quadrature may be represented as multiplied by j to give a rotation of 90º or
multiplied by �j to give a rotation of �90º.

SAQ2-1-1 Write down the values of:

a. j2

d. �j2

g. j6

b. j3

e. (�j)2

h. (�j)4

c. j4

f. j5

i. �j4
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The Argand
diagram

Since multiplying a real number by  j  represents a rotation of 90º, we may
represent the imaginary numbers graphically as lying on an axis at right angles to
the real line.

This graphical representation is called an Argand diagram.

The imaginary numbers lie on the imaginary axis at 90º to the real axis, so for
example, the imaginary number j3 would be obtained by rotating 90º from the real,
number 3.  The imaginary number �j4 would be obtained by rotating 90º from the
real number �4 or by rotating �90º from the real number +4.

It does not matter whether we write, for example,  j3 or 3j.  They are the same
thing.  In electrical engineering, where we regard  j  as a rotational operator, we
tend to write it in the form j3, implying that it is the real quantity 3 rotated by 90º,
ie in quadrature.  In mathematics texts, they tend to write it in the form 3j or more
commonly, 3i.

Note that the real and imaginary numbers do not coincide at any point other than
zero.

```````````````````````
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SAQ2-1-2 Simplify

a. 5 × j

d. j4 × j

g. (j2)2

b. 6 × �j

e. �j2 × �j

h. (�j2)3

c. j2 × 3

f. �j2 × j7

i. �(�j2)4

`
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Complex
numbers

A complex number is a number which contains a real part and an imaginary part, ie
z  =  a + jb  is a complex number, where a, b are real numbers.  The real part is a
and the imaginary part is jb.  On the Argand diagram a complex number is
represented by a point in the plane.

For example, the point  3+j4  has a real coordinate of 3 and an imaginary
coordinate of 4.  The point  �5�j2  has a real coordinate of �5 and an imaginary
coordinate of �2.  This plane is called the complex plane.

Rectangular
form

Complex numbers written in the form of real and imaginary coodinates, ie the
form a + jb, are said to be in rectangular form.

A real number may be regarded as a complex number with zero imaginary part.
Hence, the real numbers are a subset of the complex numbers.  Similarly a purely
imaginary number may be regarded as a complex number with zero real part.

SAQ2-1-3 a. Write down the Real part and the imaginary part of the complex numbers in
the table.

Number Real part Imaginary part
5 + j4
3 � j2
�1 � j
6
j8
√9
√�9
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b. Mark the complex numbers from the table in part (a), on the Argand diagram
below.

Representation
of vectors

One important application of complex numbers is their use to represent vectors.  It
is convenient to use the complex number a+jb to represent the vector joining the
origin 0+j0 to the point a+jb.  The vectors may then be added and multiplied using
complex number arithmetic, which considerably simplifies their manipulation.

Representation of vectors by complex numbers

 4+j5
 �2+j3

 �2�j2

 6�j4
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Complex
number
arithmetic

The complex numbers follow the same basic laws as real numbers, ie If U, V, W,
are complex numbers:

U + V = V + U
UV = VU (commutative laws)

(U + V) + W = U + (V + W)
(UV)W = U(VW) (associative laws)

U(V + W) = UV + UW (distributive law)

Addition and
subtraction of
complex
numbers

The addition of complex numbers is similar to the addition of vectors, ie the
horizontal and vertical components are added separately.  To add 2 complex
numbers, simply add their real parts and add their imaginary parts.

If z1 = a + jb, z2 = c + jd, then

z1 + z2  =  a + c + jb + jd = (a + c) + j(b + d)

Examples 2 + j3 + 4 + j5= 6 + j8

�5 + j6 + 2 � j = �3 + j5

3 � j2 + �1 + j7 = 2 + j5

Subtraction is similar:

If z1 = a + jb, z2 = c + jd, then

z1 � z2 = a � c + jb � jd = (a � c) + j(b � d)

Examples 4 + j2   �   (3 + j4) = 1 � j2

�6 � j5   �   (3 � j7) = �9 + j2
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SAQ2-2-1 For the following values of z1 and z2, calculate (i)  z1 + z2 (ii)  z1 � z2.

z1 z2 z1 + z2 z1 � z2

a. 5 + j2 3 + j4
b. �3 + j 4 + j9
c. 5 � j3 6 � j7
d. �3 + j2 8 � j10
e. �2 � j �5 � j12

SAQ2-2-2 If z1 = 2 + j6, z2 = 5 � j2

plot the following complex numbers as vectors on the Argand diagram below:

a.  z1 b.  z2 c.  �z2 d.  z1 + z2 e. z1 � z2

Do the rules for adding and subtracting complex numbers confirm the
parallelogram rule for vectors?  Sketch in the parallelograms and check.
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This part has
been left
blank for
working SAQs

Applications to
AC networks

One of the most important uses of complex numbers is the representation of vector
quantities in AC circuit theory.  This section does not discuss AC theory which
will be covered in Section 5; Electrical Principles.  However, the student will
probably be aware already, that a quantity such as a voltage rotated in phase by
±90º may be regarded as multiplied by ±j, and that an impedance is represented by
a complex number whose real part is the resistance and whose imaginary part is
the reactance, so that we can write the impedance of a series LCR circuit as

Z = R + j(ωL � 1/ωC)

The various components of an AC network may then be represented by complex
numbers and problems may be solved using complex number arithmetic.  This
considerably simplifies the solution of AC networks.

All problems in this section may be solved without any knowledge of electrical
theory.

Use of
calculators

Some scientific calculators will perform complex arithmetic.  Initially, you should
solve the SAQs without this facility, using the calculator for addition, subtraction,
multiplication, division, and trigonometric functions only, in order to become
familiar with the methods.  Subsequently you could use the calculator to check
your answers.
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Multiplication
of complex
numbers

Complex numbers are multiplied together using the distributive law of
multiplication, remembering that j2 = �1.

(a +jb)(c + jd) = a(c + jd)  +  jb(c + jd)

= ac + jad  +  jbc + j2bd

= ac + jad  +  jbc � bd

= ac � bd  +  j(ad + bc)

Examples a. (2 + j3)(4 + j5) = 8 + j10 + j12 + j215
= 8 + j10 + j12 � 15 =  �7 + j22

b. (3 � j7)(2 + j6) = 6 + j18 � j14 � j242
= 6 + j18 � j14 + 42 =  48 + j4

c. (�2 � j8)(1 � j3) = �2 + j6 � j8 + j224
= �2 + j6 � j8 � 24 =  �26 � j2

d. j(7 + j5) = j7 + j25
= j7 � 5 =  �5 + j7

e. (1 + j)2 = 1 + j2 + j2
= 1 � 1 + j2 =  j2

f. (1 + j)(1 � j) = 1 � j + j � j2

= 1 + 1 =  2

g. (1/√2 + j/√2) (�1/√2 � j/√2) = �½ � j½ � j½ � j2½
= �½ �j½ � j½ + ½ =  �j
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SAQ2-2-3 Calculate z1 z2 in the form a + jb for the following complex numbers:

z1 z2 z1 z2

a. 5 + j2 3 + j4

b. �3 + j7 6 + j8

c. �4 � j 5 + j2

d. 12 + j7 9 � j

e. 3 � j2 �4 � j5

f. �8 � j3 �3 � j5

g. ½ + j √3/2 ½ + j √3/2
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SAQ2-2-4
a. Plot on the Argand diagram below, the vector representing  z1 = 5 + j7

b. Calculate z2 = j(5 + j7) in the form a + jb and plot this vector also.

c. Measure the angle between z1 and z2.  What rule does the result confirm?

d. Calculate z3 = �j(5 + j7) in the form a + jb and plot this vector also.

What are the angles between (i)  z1 and z3 (ii)  z2 and z3?
What principle does this illustrate?
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Complex
conjugate

The conjugate of the complex number a + jb is the number a �jb.  For example,
the conjugate of  2+j3  is  2�j3.  The conjugate of  4�j5  is  4+j5.

The conjugate of the complex number z if often denoted  z*  or  z.

Rule:  To  find  the conjugate of  a
complex number, change the
sign of the imaginary part.

The complex conjugate is a very useful tool.  The sum or product of a complex
number and its conjugate are always real.

Sum: (a + jb)  +  (a � jb)  =  2a,  which is real.

Product: (a + jb)(a � jb)  =  a2 � (jb)2 =   a2 � (�b2)
=   a2 +b2,  which is real.

Note the similarity to conjugate surds (section 1).  The difference is that with
complex numbers, the j2 causes a change in sign:

(a + b)(a � b)  =  a2 � b2

(a + jb)(a � jb)  =  a2 + b2

Rule: The complex number  a + jb  or  a � jb
multiplied by its conjugate is:

Examples z z* z + z* z  z*
2 + j3 2 � j3 4 13

2 � j5 4 + j5 8 41

�2 + j3 �2 � j3 �4 13

�5 � j7 �5 + j7 �10 74

√2 + j√2 √2 � j√2 2 √2 4

a2 + b2
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SAQ2-2-5 For the values of z in the table, write down

(i)  the conjugate, z* (ii)  the sum z + z* (iii)  the product z  z*

z z* z + z* z  z*
4 + j6
3 � j7

�2 + j5
�9 � j12
2 � j√3

1/√2 + j/√2
�½ � j √3/2

Reflection The complex conjugate of a number represents a reflection in the real axis.
Imagine the real axis as a mirror with the vector 5+j3 reflected in it.

 5+j3

 5�j3

  θθθθ

  −−−−θθθθ

SAQ2-2-6 If z is a complex number, its conjugate z* represents a reflection in the real axis.
What does �z* represent?
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Division of
complex
numbers

To divide one complex number by another, we turn the divisor into a real number.
Therefore we multiply numerator (top) and denominator (bottom) by the complex
conjugate of the denominator, ie

x
y

x y
y y

=
*
*

By multiplying numerator and denominator by the same quantity we are, of course,
multiplying it by 1, which does not change its value, however, it conveniently
turns the denominator into a real number.

Examples
a.

2 3
4 5

+
+

j
j

=
( )( )
( )( )
2 3 4 5
4 5 4 5

8 10 12 15
4 52 2

+ −
+ −

=
− + +

+
j j
j j

j j

=
23 2

41
23
41

2
41

+
= +

j
j

      =  0·561 + j0·049  to 3 decimal places.

b.
7 5
3 4

+
−

j
j

=
( )( )
( )( )
7 5 3 4
3 4 3 4

21 28 15 20
3 42 2

+ +
− +

=
+ + −

+
j j
j j

j j

=
1 43

25
1
25

43
25

+
= +

j
j

      =  0·04 + j 1·72

c. 1 1
1j

j
j j

j j=
× −
× −

= − = −

This last result is particularly useful, because we can express �j as  1
j

For example, later in AC theory we shall use the expression
j 1R R+
C j C

− ≡
ω ω

This formula may be written in either form, whichever is convenient.
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SAQ2-2-7 Evaluate the following, expressing the answers in the form a + jb.

a.
3 8
1
+
+

j
j

b.
5 6
6 8

−
−

j
j

c.
− −
− −
8 7
7

j
j

d. 10
2 + j

e. 1
R j L+ ω
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SAQ2-2-8 The impedance of a series circuit is given by

Z  =  Z1  +  Z2  +  Z3

Calculate Z,  given Z1  =  1000 + j250 ohms,   Z2  =  2200 � j750 ohms,
Z3  =  300 � j125 ohms.

SAQ2-2-9 The impedance of a parallel circuit is given by

Z  =  
Z Z

Z Z
1 2

1 2+

Calculate Z, given Z1  =  1·0 � j1·5 kΩ, Z2  =  5·0 + j3·2 kΩ.
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SAQ2-2-10 If  1 1 1 1

1 2 3Z Z Z Z
= + +

calculate Z,  given  Z1  =  2 + j3, Z2  =  1 � j, Z3  =  3 + j4

SAQ2-2-11 Solve the following equation for z.

  3z + 3z   4  
1 � j  j 3 � j



CW/P-361.doc

Chapter 3

Polar form



Section 2:  Complex numbers - Polar form

CW/P-361.doc 3-1

Polar form of a
complex
number

The form a + jb of a complex number is called the rectangular form or the
Cartesian form.  The number is specified by its Real coordinate  a  and its
Imaginary coordinate  b.

 r

θ

The complex number  z  could be equally specified by the length from 0 to z,
which we shall call  r,  and the angle  θ  measured from the positive real axis.
(You will recall that a positive angle represents an anticlockwise rotation.)

The polar form of  z  is written:  z  =  r ∠ θ

modulus r  is called the modulus or the magnitude of  z  and written | z |.  It is a scalar
quantity since it measures the length from 0 to z irrespective of the direction.
Hence r ≥ 0.

argument θ is called the argument of z, or simply the angle.  It is sometimes written as
arg(z).  It is the angle between the vector from 0 to z and the positive real axis.  By
convention, a rotation greater than 180º is regarded as a negative (clockwise)
angle, so that the numerically smallest value of θ is used.  Hence �180º <θ≤ 180º,
or in radians �π<θ≤π.

 +200°

 �160°

For example,

4.5 ∠ 200º would normally

be written as  4.5 ∠ �160º.
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Conversion The relationship between (a,b) and (r, θ) can be seen from the diagram.
between
rectangular and
polar forms

a = r cos θ
b = r sin θ

r a b= +2 2

tan θ  =  b/a

Rules:
To convert from rectangular to polar form

r a b= +2 2 , tan θθθθ  =  b/a

To convert from polar to rectangular form
a = r cos θθθθ b = r sin θθθθ

Rectangular
to polar
Examples

a. In the above diagram, z = 4 + j3.  Convert 4 + j3 to polar form.

r  =  | z |  =  4 32 2+   =  5

tan θ  =  3/4 = 0.75  ∴   θ = tan�1 0.75 = 36·9º.

Hence, 4 + j3  =  5 ∠ 36·9º.

Determining
the correct
quadrant for
the angle

If tan θ  =  b/a, it is not necessarily true that  θ  =  tan�1 (b/a).  The function  tan�1 x
(or arctan x)  is defined as having a value between �90º and +90º.

ie �90º < tan�1 x <90º
or in radians, �π/2 < tan�1 x <π/2

This is the range of the angle given by the tan�1 function on a calculator.  So, for
example, although  tan 135º  =  �1, if we calculate tan�1(�1) we get the result
θ = �45º.
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Determining the correct quadrant is quite simple.  Looking at the diagram:

If a, b are both positive
0º < θ < 90º

If a positive, b negative
�90º < θ < 0º

If a negative, b positive
90º < θ < 180º

If a, b are both negative
�180º < θ < �90º

Examples b. Convert z = �5 + j4 to polar form.

| z | =  = ( )− +5 42 2  =  6·4

tan θ  =  �4/5  =  �0·8

tan�1(00·8)  =  �38·7º  but θ must
lie between 90º and 180º.

Hence, θ  =  �38·7º + 180º  =  141·3º

∴  �5 + j4 = 6·4 ∠ 141·3º

141·3°

c. Convert z = �6 � j3 to polar form

| z |  =  =  ( ) ( )− + −6 32 2  =  6·7

tan θ  =  �3/(06)  =  0·5
tan�1 0·5  =  26·6º  but θ must
lie between �90º abd �180º.

Hence, θ  =  26·6º � 180º  =  �153·4º

∴  �6 � j3  =  6·7 ∠ �153·4º

�153·43°

A "mental sketch" will show which quadrant contains the angle.
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Example d. Convert z = 3 � j4 to polar form

| z |  =  3 42 2+ −( )   =  5

tan θ  =  �4/3  =  �1·3333
tan�1(�1·3333)  =  �53·1º

The angle must lie between �90º and 0º
∴  �53·1º is the correct angle.

∴   3 � j4  =  5∠ �53·1º

Pure real or
pure imaginary
complex
numbers

What happens if a or b is zero?  The angle is not in any particular quadrant but lies
on one of the axes.  This happens if the number is purely real or purely imaginary.
However it is still a complex number and has a rectangular and a polar form.

For example  z  =  0 + j
We cannot use the formula  tan�1(1/0) since division by zero is not permitted.
However, it is clear that:

1  =  1∠ 0º, �1  =  1∠ 180º
j  =   1∠ 90º, �j  =   1∠ �90º

Example Convert �j6 to polar form.
�j6 clearly has a magnitude of 6 at an angle o

∴  �j6  =  6∠ �90º

 Rules:  If a is positive, then θθθθ = tan�1 (b/a)
If a is negative, then θθθθ = tan�1 (b/a) ± 180º.
ie add or subtract 180º to tan�1 (b/a), whichever gives
the angle in the correct range,  -180º < θθθθ ≤≤≤≤ 180º.

�1= 1∠ 180°

�1
f �90

j = 1∠ 90°

 �j
º.

 = 1∠ �90°

1= 1∠ 0°



Section 2:  Complex numbers - Polar form

CW/P-361.doc 3-5

Polar to
rectangular

Polar to rectangular conversion is usually more straightforward since most
calculators will evaluate sines and cosines of any sized angle without having to
worry about the quadrant.

Since,     a =  r cos θ, b  =  r sin θ
r∠θ ≡   r cos θ  +  j r sin θ

≡  r (cos θ  +  j sin θ)

Examples a. Convert  4∠ 30º  to rectangular form.

4∠ 30º =  4(cos 30º + j sin 30º)
=  4(0·866 + j 0·5)
=  3·464 + j 2

b. Convert  5·4∠ �60º  to rectangular form.

5·4∠ �60º =  5·4(cos(�60º) + j sin(�60º))
=  5·4(0·5 � j 0·866)
=  2·7 � j 4·677

c. Convert 6·8∠ 135º  to rectangular form.

6·8∠ 135º =  6·8(cos 135º + j sin 135º)
=  6·8(�0·707 + j 0·707)
=  �4·808 + j 0·808

d. Convert 10∠ �150º  to rectangular form.

10∠ �150º =  10(cos(�150º) + j sin(�150º))
=  10(�0·866 � j 0·5)
=  �8·66 � j 5
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Example e. Convert 6∠ �2π/3  to rectangular form.

It should be remembered that angles are always assumed to be in radians unless
otherwise specified.  eg  ∠ 2º means 2 degrees, but ∠ 2  means 2 radians.

6∠ �2π/3 =  6(cos(�2π/3) + j sin (�2π/3))
=  6(�0·5  �  j 0·866)
=  �3  �  j 5·196

SAQ2-3-1 Convert the following complex numbers to the polar form,  r∠θ ,  expressing θ in
degrees correct to one decimal place.

a. 6 + j8

b. �7 + j5

c. �2·5 � j3·6

d. 5 � j12
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SAQ2-3-2 Express the following complex numbers in polar form:

a. j2·5

b. �j7

c. �5

d. 3·8

SAQ2-3-3 Convert the following complex numbers to polar form, expressing the angle
exactly in radians.

a. 3 + j3

b. �√3 + j

c. �2 � j2√3
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SAQ2-3-4 Express in the form a + jb:

a. 5∠ 32º

b. 6·2∠ 140º

c. 0·8∠ �155º

d. 4·9∠ �20º

e. 3∠π /4
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SAQ2-3-5 Express in rectangular form:

a. 8∠π /3

b. 5∠ 5π/6

c. √2∠ �π/4

d. 3∠ �π/2

e. 7·52∠π

Use of
Calculators

Note:  Most scientific calculators will do polar/rectangular conversion.
Before using this facility you should master the methods in this chapter,
checking your answers by calculator.  Having mastered the theory, you may
use the calculator for all subsequent problems and for circuit theory
questions.  Some calculators will also perform complex arithmetic in
rectangular form.
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Multiplication
and division in
polar form

Addition and subtraction of complex numbers must be done in rectangular form,
however multiplication and division are much more easily performed in polar form
using the following rules:

If r1 ∠θ 1 ,      r2∠θ 2       are 2 complex numbers:

r1∠θ 1  ×  r2∠θ 1  =  r1r2∠ (θ1 + θ2)

ie when multiplying; multiply the magnitudes and add the angles.

r
r

r
r

1 1

2 2

1

2
1 2

∠θ
∠θ

= ∠ −( )θ θ

ie when dividing; divide the magnitudes and subtract the angles.

Examples a. 2∠ 20º  ×  3∠ 55º =  6∠ 75º

b. 4∠ �45º  ×  5∠ 130º =  20∠ 85º

c. 1·5∠ 80º  ×  6∠ 150º =  9∠ 230º =  9∠ (230º � 360º)
=  9∠ �130º

Note:  Subtract 360º to make  �180º < θ ≤ 180º

d. 2·4∠ �100º  ×  3·5∠ �150º  =  8·4∠ �250º =  8·4∠ (�250º + 360º)
=  8·4∠ 110º

Note:  Add 360º to make  �180º < θ ≤ 180º

e. 6∠ 75º  ÷  3∠ 30º =  2∠ 45º

f. 7∠ �56º  ÷  2∠ �150º =  3·5∠ 94º

g. 24∠ 120º  ÷  6∠ �130º =  4∠ 250º =  4∠ (250º � 360º)
=  4∠ �110º

Note:  Subtract 360º to make  �180º < θ ≤ 180º

h. 5·5∠ �80º  ÷  1·1∠ 200º =  5∠ �280º=  5∠ (�280º + 360º)
=  5∠ 80º

Note:  Add 360º to make  �180º < θ ≤ 180º

Rotating by any multiple of 360º obviously gives the same values of a and b.
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Proof of
multiplication
and division
rules

The proofs are given below of the rules for multiplication and division in polar
form.  These proofs are given for interest only.  You may skip over them if you
prefer.

In these proofs, we make use of the trigonometric identities:
sin(A ± B)  ≡  sin A  cos B  ± cos A  sin B

cos(A ± B)  ≡ cos A  cos B  �  sin A  sin B

cos2 A + sin2 A  ≡  1

Multiplication r1∠θ 1  ×  r2∠θ 2  =  r1(cos θ1 + j sin θ1)  r2(cos θ2 + j sin θ2)

=  r1r2(cos θ1 + j sin θ1) (cos θ2 + j sin θ2)

=  r1r2 {cos θ1 cos θ2 + j2 sin θ1 sin θ2  + jsin θ1 cos θ2 + jcos θ1 sin θ2}

= r1r2 {(cos θ1 cos θ2 � sin θ1 sin θ2)  + j(sin θ1 cos θ2 + cos θ1 sin θ2)}

= r1r2 {cos θ1 + cos θ2)  +  j sin (θ1 + θ2)}

= r1r2∠ (θ1 + θ2)

Division

22

1

θ∠
θ∠

r
r1 =  

( )
( )22

11

sinjcos
sinjcos

θ+θ
θ+θ

=
2

1

r
r ( ) ( )

( ) ( )2222

2211

sincossincos
sincossincos

θ−θθ+θ
θ−θθ+θ

jj
jj

=
2

1

r
r

2
22

2
2

212121
2

21

sinjcos
sincosjcossinjsinsinjcoscos

θ−θ
θθ−θθ+θθ−θθ

=
2

1

r
r ( )

2
2

2
2

21212121

sincos
sincoscossinjsinsincoscos

θ+θ
θθ−θθ+θθ+θθ

=
2

1

r
r ( ) ( )

1
sinjcos 2121 θ−θ+θ−θ

=
r
r

1

2
1 2∠ −( )θ θ

r1
r2

(multiply top and
bottom by conjugate)
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SAQ2-3-6 Evaluate in polar form:

a. 3·2∠ 80º  ×  4·5∠ 23º

b. 7·4∠ 120º  ×  8∠ 75º

c. 8·2∠ �π/6  ×  3·5∠ 2π/3

d. 9·5∠ �40º  ×  3∠ �175º

e. 2·2∠π   ×  7·4∠π /4

f. 4·8∠ 135º  ÷  3·2∠ 70º

g. 3·28∠ 150º  ÷  16·4∠ �80º

h. 19∠ �100º  ÷  2∠ 80º

i. 15∠ 3π/4  ÷  4∠ �2π/3
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De Moivre's
theorem

It follows from the rule for multiplication that:

(r∠θ )2  =  r  ×  r ∠ (θ+θ) = r2∠ 2θ

(r∠θ )3  = r∠θ   ×  (r∠θ )2 = r3∠ 3θ

We can see that by successive multiplication that  (r∠θ )n  =  rn∠ nθ

If r = 1,  we can write the above as (cos θ + j sin θ)n  =  (cos n θ + j sin n θ

This is called de Moivre's theorem.  It can be shown that it is true for any value of
n, not just positive integers.  De Moivre's theorem and the rules for multiplication
and division in polar form, can be proved more directly from the exponential form
of a complex number which we shall now consider.

Exponential
form of a
complex
number

Something about the above rules may seem familiar from Section 1, chapter 3.
When multiplying we add the angles.  When dividing we subtract the angles.
When raising to a power we multiply the angle by the power.  These look like the
rules of indices.  This is no coincidence, since  θ  is in fact an imaginary index.
The exponential form, sometimes called Euler's identity is:

in the form ejθ , θ is always measured in radians.

Thus the exponential form of a complex number is

A proof of Euler's identity is given on the next page, however, this identity is often
taken as a definition of ejθ.  All the trigonometric identities can be derived from it.

The proof is given for interest only and you may skip it if you wish.  The
exponential form is very important in signal processing theory and should be
committed to memory.

cos θθθθ  +  j sin θθθθ  ≡≡≡≡  ejθθθθ

r∠θ   ≡  rejθ

θ  measured in radians
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Proof of Euler's
identity Let  z  =  cos θ  +  j sin θ

Differentiating with respect to θ ;

dz = �sin θ  +  j cos θ
dθ

=  j2 sin θ  + j cos θ

=  j(cos θ  +  j sin θ)

=  jz

∴ dz =  jz
dθ

Integrating, ∫ = j dθ�

In z = jθ  +  c where c is an arbitrary constant.

Hence,       z = ejθ + c

∴  cos θ + j sin θ = ejθ + c

To determine c,  put θ = 0, giving 1 = ec  ∴   c = 0

Hence,  cos θ  +  j sin θ  =  ejθ

The rules for multiplication, division, and De Moivre's theorem now follow
directly from the rules of indices, ie

Multiplication r1∠θ 1  ×  r2∠θ 2  =  r1ejθ1  ×  r2ejθ2 =  r1r2 ej(θ1 + θ2)

=  r1r2∠ (θ1 + θ2)

Division
r1∠θ 1  ÷  r2∠θ 2  =  r1ejθ1  ÷  r2ejθ2 =  

r
r

1

2

  ej(θ1 � θ2)

=  
r
r

1

2

  ∠ (θ1 � θ2)

De Moivre (r∠θ )n  =  (r ejθ)n = rn ejnθ =  rn∠ nθ (for any n)

dz
 z
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SAQ2-4-1 Write the following complex numbers in the form r ejθ.

a. 4·5∠ 30º

b. 2·5 � j1·2

c. �10 � j12

d. 2 + j2√3
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Powers of
complex
numbers

De Moivre's theorem may be used to find powers of complex numbers which
would be very laborious in rectangular form.

Example Evaluate (0·9 + j1·2)7

Expanding this in rectangular form would take some time.
In polar form,  0·9 + j1·2 = 1·5∠ 53·13º.

By De Moivre's theorem, (1·5∠ 53·13º)7 =  1·57∠ 53·13º x 7
=  17·09∠ 372º =  17·09∠ 12º

=  16·72 + j3·53

Complex
conjugate

1/ejθ  =  e�jθ ; ie  ejθ and e�jθ are inverses of each other.

ejθ and e�jθ are also complex conjugates of
each other.
Proof: From Euler's identity, ejθ  ≡  cos θ  +  j sin θ

You should recall from trigonometry that
cos(�θ)  =  cos θ,  ie  cosine is an even function.
sin (�θ)  =  �sin θ,  ie  sine is an odd function.

Hence, e�jθ  ≡  cos θ  �  j sin θ,  which is the conjugate of ejθ.

SAQ2-4-2 Using De Moivre's theorem evaluate the following in polar form and convert to
rectangular form.

a. (2∠ 20º)3
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b. (3∠ �100º)4

c. (2 + j3)6

d. (�3 � j4)5

e. (3∠ �π/3)2
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Exponential
form of sine
and cosine

Above, we proved the important identity

cos θ  +  j sin θ   ≡   ejθ

Remember that θ is measured in radians.

Putting θ equal to x and = �x in the identity, we get:

cos x + j sin x  ≡  ejx ..................... (1).
cos x � j sin x   ≡  e�jx ..................... (2).

Adding (1) and (2)  we obtain 2 cos x ≡  ejx  +  e�jx

    Hence, cos x ≡  ejx  +  e�jx

2

Subtracting (2) from (1) we obtain 2j sin x ≡ ejx  �  e�jx

    Hence, sin x ≡  ejx  +  e�jx

2j

These two expressions may be taken as definitions of the circular functions, sine
and cosine.  They are very important in signal processing theory and should be
remembered.  To emphasise their importance, they are repeated below.     x is of
course measured in radians.

cos x ≡ ejx  +  e�jx

 2
sin x ≡ ejx  �  e�jx

 2j

As 1/j = �j, we can also write the expression for  sin x  as:

sin x ≡ j½(e�jx  �  ejx)
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It should be appreciated that although sin x and cos x are defined in terms of
complex numbers, that the sines and cosines of real numbers are real.  Why is this
so?  You will recall from chapter 1 that the sum of a complex number and its
conjugate is purely real.  Also the difference of a complex number and its
conjugate is purely imaginary.

We have seen that  ejx  and  e�jx  are complex conjugates.

∴  ejx  +  e�jx  must be real, hence  ½(ejx  +  e�jx)  is real.

ejx  �  e�jx  must be imaginary,  hence  1
2j

 (ejx  �  e�jx) is real.

SAQ2-4-3 Given that   tan x ≡ sin x
cos x

Write down expressions for tan x in terms of

a. ejx  and  e�jx b. ej2x  and  e�j2x
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Roots of a
complex
number

We have seen that every real number has 2 square roots.  For example, the square
roots of 4 are ±√4 = ±2.

Similarly, every complex number (which in
roots.

Consider the complex number �5 + j12.  Thi
�2 �j3 .  Check:

(2 + j3)2  =  22 + (j3)2 + 2 × 2 × j3  =  4 �9  j

(�2 � j3)2  =  (�2)2 + (�j3)2 + 2 × (�2) × (�j3

The 2 square roots of any complex numb
angles are 180º apart.

This can be proved from De Moivre's theore

Consider the 2 numbers,  z1 = r∠θ ,    z2 =
modulus, r, and are separated by 180º.

z1
2  =  r2∠ 20, z2

2  = r2∠ (20 ± 360º)

Now, cos(φ ± 360º) + j sin(φ ± 360º)  ≡  cos 
Hence, z1

2 = z2
2.   ∴  z1 and z2 are bot

5 4 3 2 1 0 1 2 3 4 5

x

 2+j3

 �2�j3
cludes the real numbers) has 2 square

s has the square roots 2 + j3 and

12 = �5 + j12

)  =  4 �9 + j12 = �5 + j12

Note that these roots also are
180º apart, since each root is
�1 times the other.
ie the square roots of
�5 + j12  are  ±(2 + j3).

The 2 roots have the same
modulus.
2 + j3  =  3·6∠ 56·3º
�2 � j3  = 3·6∠ (56·3º � 180º)

  =  3·6∠ �123·7º

er have the same modulus and their

m.

 r∠ (θ ± 180º), which have the same

by De Moivre.

φ + j sin φ
h square roots of the same number.

These roots are180º apart, since
multiplication by �1 represents a
rotation of 180º (c.f. Section 1,
chapter 1).
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Furthermore, since they have the same modulus, r, and there is a rotation of 180º
between them;  z2 = �z1.

Finding the
square root of a
complex
number

De Moivre's theorem gives us a way of finding square roots.  Putting n = ½,

(r∠θ )½  = r½∠ ½θ

Hence, r½∠ ½θ is a square root of r∠θ .  This is called the principal value.  The
other root is the negative of this, which is r½∠ (½θ ± 180º).  Whether we add or
subtract 180º depends which gives us an angle in the conventional range of
�18 < θ ≤ 180º.

Examples a. Find the square roots of 9∠ 60º
The principal root is √9∠ ½×60º =  3∠ 30º = 2·6 + j1·5
The other root is 3∠ (30º � 180º) =  3∠ �150º= �2·6 � j1·5

In this instance, we subtract 180º giving �150º, rather than adding which
would give 210º.

Hence the square roots are ±(2·6 + j1·5).

b. Find the square roots of �3 + j4

Converting to polar form,  �3 + j4 = 5∠ 126·87º

The principal root is √5∠ ½×126·87º =  2·236∠ 63·43º =  1 + j2
The other root is 2·236∠ (63·43º�180º) =  2·236∠ �116·57º =  �1 � j2

Hence the square roots of �3 + j4 are  ±(1 + j2)

c. Find the square roots of �12 � j35

Converting to polar form,  �12 � j35  =  37∠ �108·92º

The principal root is √37∠ ½×�108·92º =  6·08∠ �54·46º =  3·54 � j4·95
The other root is 6·08∠ (�54·46º + 180º) =  6·08∠ 125·54º =  3·54 + j4·95

In this instance, we add 180º to give 125·54º

Hence the square roots of �12 � j35 are  ±(3·54 � j4·95).

It should be evident, by now, that we only need to find the principal value in
rectangular form and multiply it by �1 to give the other root.
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SAQ2-5-1 Find the 2 square roots of the following numbers and express the answers in
rectangular form.

a. 25∠ �120º

b. 5 � j12

c. �24 � j70

d. 6 + j8

e. �j9
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Further roots of
complex
numbers

Cube Roots

A complex number has 3 cube roots.  They have the same modulus and are
separated by 360º ÷ 3  =  120º.  Again, this can be proved by De Moivre's theorem.

z1 = r∠θ , z2 = r∠ (θ + 120º),      z3 = r∠ (θ � 120º)

are 3 complex numbers of the same modulus, r, separated by 120º.  By De
Moivre's theorem:

z1
3  =  r3∠ 30

z2
3  = r3∠ (30+360º)

z3
3  = r3∠ (30�360º)

Now, cos(φ±360º) + j sin(φ±360º)  ≡  cos φ + j sin φ
hence, z1

3  =  z2
3  =  z3

3

∴  z1, z2, z3  are all cube roots of the same number.

Finding the
cube root of a
complex
number

Example

Therefor, by De Moivre's theorem one cube root of r∠θ   is r1/3∠θ ÷3.
The other 2 roots are  r1/3∠ (θ÷3 + 120º)  and r1/3∠ (θ÷3 � 120º).

a. Find the cube roots of 8∠ 60º

One cube root is 81/3 ∠ 60º÷3 =  2∠ 20º =  1·88 + j 0·68

The other roots are 2∠ (20º+120º) =  2∠ 140º =  1·53 + j1·29
      and 2∠ (20º�120º) =  2∠ �100º =  �0·35 � j1·97

The 3 cube roots are shown on the Argand diagram, each of magnitude 2,
separated by angles of 120º.
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nth root of a
complex
number

It should now be clear that the complex number r∠θ   will have n nth roots each of
modulus r1/n  separated by angles of 360º÷n.  On the Argand diagram the roots will
lie on a circle of radius  r1/n, spaced equally around the circle at angular intervals
of 360º÷n.

Find the four 4th roots of  j.

Example Converting to polar form, j = 1∠ 90º

The principal 4th root is 1¼∠ 90º÷4  =  1∠ 22·5º =  0·924 + j0·383
The other 3 roots are found by adding or subtracting multiples of 360÷4  =  90º.
The other roots are:

1∠ (22·5º+90º) = 1∠ 112·5º = �0·383 + j0·924
1∠ (22·5º�90º) = 1∠ �67·5º = 0·383 � j0·924
1∠ (22·5º�180º) = 1∠ �157·5º = �0·924 � j0·384

The roots are shown on the Argand diagram, lying on a circle of unit radius,
spaced apart by 90º.

You may have spotted that the roots may be found by multiplying the rectangular
form successively by j.  This is, of course, because multiplication by j rotates by
90º.
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SAQ2-5-2 Find the 3 cube roots of the following complex numbers and express the results in
rectangular form.

a. 125∠ �150º

b. �610 � j182

SAQ2-5-3 Find the 3 cube roots of �1 in rectangular form and sketch them on the Argand
diagram.
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SAQ2-5-4 The characteristic impedance of a transmission line is given by:

Z0  =  
R j L
G j C

+
+

ω
ω

Evaluate the principal value of Z0 where
R = 5 ohms,  G = 2 × 20�6 siemens,  L = 10�5 henrys,  C = 3 × 10�12 farads,
ω = 2π × 106 rad/s.

SAQ2-5-5 The propagation coefficient of a transmission line is defined as

γ = ( )( )R j L G j C+ +ω ω

Evaluate the principal value of γ where  R = 50,  L = 0·0004,  C = 2 × 10�12,
G is negligible,  ω = 2π × 16000
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Equating real
and imaginary
parts

In chapter 1 we saw that the real and imaginary numbers coincide only at zero.  A
real number has no imaginary part and an imaginary number has no real part.  This
enables us to equate the real and imaginary parts of complex numbers.

If a + jb      = c + jd
then a = c    and b = d
ie 2 complex numbers are equal if and only if their real parts are equal and their
imaginary parts are equal.

It follows that if a + jb  =  0,  then  a = 0  and  b = 0.

Thus an equation in a complex variable is actually 2 equations in one.  This
process has particular applications in circuit theory where we have 2 quantities
which are in quadrature and we can solve for both at once.

Example Find a  and  b in the equation

  a + 2  = 1 � j3
2a + jb

Multiplying both sides by 2a + jb;

a + 2 =  (2a + jb)(1 � j3)
a + 2 =  2a + 3b � 6 ja + jb
      2 =  a + 3b + j(�6a + b)

Hence,  a + 3b  =  2 and �6a + b  =  0
Solving this pair of simultaneous equations gives a  =  2/19 ,   b  =  12/19.
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Example The condition for balance of a 4 arm bridge is:

Z
Z

Z
Z

1

2

3

4

=

It is used to measure the unknown inductance Lx and Resistance Rx of a coil, in
terms of known components.

Z1 =  Rx + jωLx ohms, is the impedance of the unknown coil.

Z2 =  2 + jω 0·1 ohms, is the impedance of a standard coil.

Z3 =  94·5 Ω is a known resistance.

Z4 =  25 Ω is a known resistance.

We can therefore write the equation

R x xj L
j
+

+ ⋅
ω

ω2 0 1
= 94 5

25
⋅

Rx + jωLx = 3·78(2 + jω 0·1)

Rx + jωLx = 7·56 + jω 0·378

Equating real parts:  Rx  =  7·56 ohms

Equating imaginary parts:  ωLx  =  ω 0·378

∴  Lx  =  0·378 Henrys.

You may note that this measurement is independent of the frequency ω at which it
is performed.

This technique of equating real and imaginary parts enables us to solve for 2
unknowns which are in quadrature, at the same time.
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SAQ2-6-1 If (a + jb)2 + b2  =  4 + j12  where a is positive,  find a and b.

SAQ2-6-2 The condition for balance of a 4 arm bridge is

Z
Z

Z
Z

1

2

3

4

=

If Z1 =  Rx  �  j/(ωCx)

   Z2 =  0·1 � j/(ω 3·5 × 10�6)

   Z3 =  24

   Z4 =  50

Find the values of  Rx  and  Cx
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Quadratic
equations

Section 1, chapter 4 discussed the real roots of quadratic equations.  You will recall
that a quadratic equation is of the form

ax2 + bx + c = 0

and has 2 roots which are given by

x  =  
− ± −b b ac

a

2 4
2

You will also recall that the expression b2 � 4ac is called the discriminant and that
if the discriminant is negative it has no real square root.  Thus, even if the
coefficients  a, b and c  are real, the equation has no real solution.

However, we know that the square root of a negative real number may be expressed
as an "imaginary" number, and so such an equation has a complex solution.

Example Solve the equation  x2 � 4x + 13  =  0

Applying the formula:

x =
4 4 4 1 13

2 1

2± − × ×
×

( )

=
4 16 52

2
± −( )

=
4 36

2
± −

=
4 6

2
± j

= 2 ± j3

Thus the 2 roots are  2 + j3 and 2 � j3.  It is evident that if the roots are complex,
then they will be complex conjugates.

We can state as a rule:

The equation  ax2 + bx + c  =  0
where a, b, c are real numbers,
has complex conjugate roots if b2 � 4ac <0
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SAQ2-7-1 Solve the quadratic equation

2x2 + 12x + 50  =  0

SAQ2-7-2 Solve the following quadratic equation, expressing the roots to 2 decimal places.

3x2 � 4x + 2 = 0
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Complex
factors

In Section 1, chapter 3, we also saw that a quadratic expression may be resolved
into 2 linear factors.  This is restated below.

ax2 + bx + c  ≡  a (x �α) (x � β)

where α, β are the roots of the quadratic equation
ax2 + bx + c = 0
If the roots, α, β are complex, then the factors are complex.

Example Factorize x2 + 4x + 13

x2 + 4x + 13  ≡  (x �α) (x � β)

where α, β are the roots of x2 + 4x + 13 = 0

Hence, α, β =  
− ± −

=
− ± −4 16 52

2
4 36

2
( )

=  
− ±4 6

2
j

= �2 ± j3

Therefore the factors are {x � (�2 + j3)}{x � (�2 � j3)}

=  (x + 2 � j3)(x + 2 + j3)

Example Factorize 4x2 � 4x + 5

4x2 � 4x + 5   ≡   4(x �α) (x � β)

where α, β are the roots of 4x2 � 4x + 5 = 0

Hence, α, β =  
4 16 80

8
4 64

8
± −

=
± −( )

=  
4 8

8
± j

= ½ ± j

Hence factors are4(x � ½ � j)(x � ½ + j)

= 2(x � ½ � j)  2(x � ½ + j)

= (2x � 1 � j2)(2x � 1 + j2)
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SAQ2-7-3 Resolve into complex factors

a. x2 � 10x + 26

b. 9x2 � 12x + 13

c. 2x2 + 8
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Factors of
higher
polynomials

The above principles may be extended to polynomials of higher degree.  For
example, consider a third degree (cubic) polynomial.

ax3 + bx2 + cx + d   ≡   a(x �α) (x � β)(x � γ)

where  α, β, γ  are the roots of ax3 + bx2 + cx + d  =  0

Cubic
functions

A cubic equation always has at least one real root.  The other 2 are either both real
(unequal or equal) or are both complex (conjugate).

This cubic function has
3 real factors:

(x+2)(x�1)(x�2)

Hence, y = 0 at
x = �2, 1, 2

This cubic function has
one real factor and 2
complex:

  (x�1)(x + 1 � j)(x + 1 + j)

  Hence,  y = 0 at  x = 1
   only.

Similarly, a fourth degree polynomial has 4 linear factors which may be all real, all
complex, or 2 real and 2 complex.  The complex roots always occur in conjugate
pairs.

 y = x3 � x2 � 4x + 4

y = x3 + x2 �2
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Polynomials of
degree n

In general, a polynomial of the nth degree has n linear factors, ie
If Pn is a polynomial of degree n with real coefficients.

Pn = a0 + a1x + a2x2 + a3x3 +  · · · · · · + anxn

≡ an(x � α)(x � β)(x � γ)(x � δ)(x � ε)  · · · · · ·(x � ζ)
  

n factors

where α, β, γ, δ, ε, +  · · · · · ·, ζ,  are the n roots of the equation Pn = 0 which may be
real or complex.  Complex roots always occur in conjugate pairs.  If n is odd, then
at least one root is real.  If any of the roots are equal then the corresponding factor is
repeated.  Such a root is called a repeated root.  Repeated roots are always real.  The
graph will touch the x axis without crossing, at a repeated root.

There are occasions in the study of networks where we may wish to resolve a
polynomial into real and/or imaginary factors.  The solution of polynomial
equations higher than quadratics is very difficult, and equations of degree higher
than 4 can usually only be solved by numerical methods on a computer.  Such
methods will be used later on your course.

If some of the roots are known, it may be possible to extract the others by division.
Example The third degree polynomial x3 � 8x2 + 37x � 50 has one real factor (x � 2) and 2

complex factors.  Find all the factors.

Applying algebraic division (refer Section 1 chapter 4.

 x2 � 6x  + 25
x � 2 ) x3 � 8x2 + 37x � 50

 x3 � 2x2

     � 6x2 + 37x � 50
     � 6x2 + 12x

       25x � 50
       25x � 50
                   0

There is no remainder, hence  x3 � 8x2 + 37x � 50  ≡  (x � 2)(x2 � 6x + 25)

Now  x2 � 6x + 25  ≡  (x � α)(x � β)
where α, β  are the roots of x2 � 6x + 25  =  0.  ∴  α, β =  6 ± √(36 � 100)

       2

=  3 ± j4

Hence,  x3 � 8x2 + 37x � 50  ≡  (x � 2)(x � 3 � j4)(x � 3 + j4)
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Example The equation  x4 + 8x3 + 23x2 + 30x + 18 = 0  has a repeated root at x = �3 and 2
complex roots.  By division and solving the quadratic equation, find all the roots.

If �3 is a repeated root, then (x + 3)(x + 3) must be factors.
Dividing the polynomial by (x + 3)2,

  x2 + 2x  +  2
x2 + 6x + 9 ) x4 + 8x3 + 23x2 + 30x + 18

  x4 + 6x3 + 9x2

2x3 + 14x2 + 30x + 18
2x3 + 12x2 + 18x

 2x2  + 12x + 18
 2x2  + 12x + 18
                         0

Hence  x4 + 8x3 + 23x2 + 30x + 18  ≡  (x + 3)2(x + 2x + 2)

Now,  x2 + 2x + 2  =  0  has the roots

�2 ± √(4�8)  =  �2 ± √(�4) = �1 ± j
        2    2

Hence the roots are x = �3, �3, �1+j, �1�j.

A sketch of the graph is shown below for interest.  Note that the graph touches the x
axis at the repeated root.
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SAQ2-7-4 The cubic polynomial x3 + 3x2 + 9x � 13  has one real factor (x � 1) and 2 complex
factors.  Find all the factors and so write down the complete factorized expression.
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SAQ2-1-1 a. j2 = �1

d. �j2 = 1

g. j6 = �1

b. j3 = �j

e. (�j)2 = �1

h. (�j)4 = 1

c. j4 = 1

f. j5 = j

i. �j4 = �1

SAQ2-1-2 a. j5

d. �4

g. �4

b. �j6

e. �2

h. �j8

c. j6

f. 14

i. �16

SAQ2-1-3 a. Number Real part Imaginary part
5 + j4 5 j4
3 � j2 3 �j2
�1 � j �1 �j

6 6 0
j8 0 j8
√9 3 0

√�9 0 j3

b.
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SAQ2-2-1 z1 z2 z1 + z2 z1 � z2

a. 5 + j2 3 + j4 8 + j6 2 � j2
b. �3 + j 4 + j9 1 + j10 �7 � j8
c. 5 � j3 6 � j7 11 � j10 �1 + j4
d. �3 + j2 89 � j10 5 � j8 �11 + j12
e. �2 � j �5 � j12 �7 � j13 3 + j11

SAQ2-2-2 a. z1 = 2 + j6 b. z2 = 5 � j2

c. �z2 = �5 + j2 d. z1 + z2 = 7 + j4

e. z1 � z2 = �3 + j8

Z1

Z1+Z2

�Z2

Z2

Z1�Z2
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SAQ2-2-2
Continued

 Z1

 Z1+Z2

 Z2

 �Z2

 Z1+(�Z2)

It can be seen that the vector  z1 + z2  is the diagonal of the parallelogram
constructed with z1 and z2.

Similarly  z1 � z2 = z1 + (�z2)  is the diagonal of the parallelogram constructed with
z1 and �z2.

This shows that the 2 methods give the same results.

Note that �z2 may be constructed by rotating  z2  through 180º.
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SAQ2-2-3

z1 z2 z1  z2

a. 5 + j2 3 + j4 7 + j26

b. �3 + j7 6 + j8 �74 + j18

c. �4 � j 5 + j2 �18 � j13

d. 12 + j7 9 � j 115 + j51

e. 3 � j2 �4 � j5 �22 � j7

f. �8 � j3 �3 � j5 9 + j49

g. ½ + j √3/2 ½ + j √3/2 �½ + j √3/2
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SAQ2-2-4 a.

z1 = 5+j7

z2 = �7+j5

z3 = 7�j5

b. z2 = j z1  =  �7 + j5

c. The angle is 90º from z1 to z2, illustrating that multiplying any complex
number by j gives a rotation of +90º.

d. z3 = �j z1  =  7 � j5

e. The angle is �90º (clockwise) from z1 to z3, illustrating that multiplying any
complex number by �j gives a rotation of �90º.

The angle between z2 and z3 is 180º, since z3 = �z2, showing that a rotation of 180º
gives the negative of a number.

SAQ2-2-5 z z* z + z* z z*
4 + j6 4 � j6 8 52
3 � j7 3 + j7 6 58

�2 + j5 �2 � j5 �4 29
�9 � j12 �9 + j12 �18 225
2 � j√3 2 + j√3 4 7

1/√2 + j/√2 1/√2 � j/√2 √2 1
�½ � j√3/2 �½ + j√3/2 �1 1
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SAQ2-2-6 �z* represents a reflection in the imaginary axis.

SAQ2-2-7 a. 3 + j8    = (3 + j8)(1 � j) = 11 + j5 = 5·5 + j 2·5
1 + j  (1 + j)(1 � j)      2

b. 5 � j6    = (5 � j6)(6 + j8)  = 78 + j4 = 0·78 + j0·04
6 � j8 (6 � j8)(6 + j8)   100

c. �8 � j7   = (�8 � j7)(�7 + j) = 63 + j41 = 1·26 + j0·82
�7 � j  (�7 � j)(�7 + j)     50

d.   10     =    10(2 � j)     = 20 � j10 = 4 � j2
2 + j (2 + j)(2 � j)      5

e. 1
2 2 2R j L

R j L
R j L R j L

R j L
R L+

=
−

+ −
=

−
+ω

ω
ω ω

ω
ω( )( )

R
R L

j L
R L2 2 2 2 2 2+

−
+ω
ω

ω

SAQ2-2-8 Z = (1000 + j250)  +  (2200 � j750)  +  (300 � j125) ohms

+ 3500 � j625 ohms.
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SAQ2-2-9 Working in kΩ

Z =  Z1 Z2    
Z1 + Z2

=   (1·0 � j1·5)(5·0 + j3·2)  
(1·0 � j1·5) + (5·0 + j3·2)

= 9·8 � j4·3 = (9·8 � j4·3)(6·0 � j1·7)
6·0 + j1·7 (6·0 + j1·7)(6·0 � j1·7)

= 51·49 � j42·46 = 1·324 � j 1·092  kΩ
38·89

SAQ2-2-10 1
Z

= 1 1 1

1 2 3Z Z Z
+ +

= 1
2 3

1
1

1
3 4+

+
−

+
+j j j

=
2 3

13
1

2
3 4

25
−

+
+

+
−j j j

(multiplying numerators and denominators by the conjugates)

= 1·154 � j0·231  +  0·5 + j0·5  +  0·12 � j0·16

= 0·774  +  j0·109

Z = 1
0 774 0 109

0 774 0 109
0 611⋅ + ⋅

=
⋅ − ⋅

⋅j
j

= 1·27 � j0·18
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SAQ2-2-11   3z   + 3z =    4   
 1 � j  j  3 � j

3z 1
1

1 4
3−

+
�

�
�

�

�
� =

−j j j

3z 1
2

4
3

+ −�

��
�

��
=

−
j j

j

3z(½ � j½) = 4
3 − j

3
2
z (1 � j) = 4

3 − j

3z/2 = 4
3 1( )( )− −j j

= 4
2 4

2
1 2−

=
−j j

= 2 1 2
5

( )+ j

∴  z = 4 1 2
15

4
15

8
15

( )+ = +j j

SAQ2-3-1 a. z  =  6 + j8

r  =  22 86 +   =  10

tan�1(8/6)  =  53·1º.  θ lies between 0 and 90º

∴  θ  =  53·1º

Hence, z  =  10∠ 53·1º

b. z  =  �7 + j5

r  =  ( ) 22 57 +−   = 8·6

tan�1(�5/7)  =  �35·5º.  θ  lies between 90º and 180º

∴  θ  =  �35·5º + 180º  =  144·5º

Hence, z  =  8·6∠ 144·5º
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c. z = �2·5 � j3·6

r  = =  ( ) ( )22 6352 ⋅−+⋅−   4·38

tan�1(3·6/2·5)  =  55·2º.  θ  lies between �90º and 180º.

∴  θ  =  55·2º � 180º  =  �124·8º

Hence,  z  =  4·38∠ �124·8º

d. z  =  5 � j12

r  =  ( )22 125 −+   =  13

tan�1(�12/5)  =  �67·4º.  θ  lies between 0 and �90º.

∴  θ  =  �67·4º

Hence, z  =  13∠ �67·4º

SAQ2-3-2 a. j2·5 =  2·5∠ 90º

b. �j7 =  7∠ �90º

c. �5 =  5∠ 180º

d. 3·8 =  3·8∠ 0º

SAQ2-3-3 a. z  =  3 + j3

r  =  22 33 +   =  4·24

tan�1(3/3)  = π/4.  θ lies between 0 and π/2

∴  θ  = π/4

Hence  z  =  4·24∠π /4
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b. z  =  �√3 + j

r  = ( ) 22
13 +− =  2

tan�1(�1/√3)  =  �π6.  θ lies between π/2 and π.

∴  θ  = �π/6 + π = 5π/6

Hence z  =  2∠ 5π/6

c. z  =  �2 � j2√3

r  = ( ) ( )22 322 −+− =  4

tan�1(√3)  =  π/3.  θ lies between �π/2 and π.

∴  θ  =  π/3 � π  =  �2π/3

Hence, z  =  4∠ �2π/3

SAQ2-3-4 a. 5∠ 32º  =  (cos 32º + jsin 32º)

=  5(0·8480 + j0·5299) = 4·24 + j2·65

b. 6·2∠ 140º  =  6·2(cos 140º + j sin 140º)

=  6·2(�0·7660 + j0·6428) = �4·75 + j3·99

c. 0·8∠ �155º  =  0·8(cos�155º + j sin�155º)

=  0·8(�0·9063 � j0·4226) = �0·73 � j0·34

d. 4·9∠ �20º  =  4·9(cos�20º + j sin�20º)

=  4·9(0·9397 � j0·3420) = 4·60 � j1·68

e. 3∠π /4  =  3(cos π/4 + j sin π/4)

=  3(0·7071 + j 0·7071) = 2·12 + j2·12
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SAQ2-3-5 a. 8∠π /3  =  8(cos π/3 + j sin π/3)

=  8(0·5 + j0·8660 = 4·00 + j6·93

b. 5∠ 5π/6  = 5(cos 5π/ + j sin 5π/6)

=  5(�0·8660 + j0·5) = �4·33 + j2·50

c. √2∠ �π/4  =  √2(cos �π/4 + j sin �π/4)

=  √2(1/√2 � j 1/√2) = 1 � j

d. 3∠ �π/2  =  3(cos �π/2 + j sin �π/2)

=  3(0 � j) = �j3

e. 7·5∠π   =  7·5(cos π + j sin π)

=  7·5(01 + j0) = �7·5

SAQ2-3-6 a. 3·2∠ 80º × 4·5∠ 23º = 14·4∠ 103º

b. 7·4∠ 120º × 8∠ 75º = 59·2∠ 195º  =  59·2∠ �165º

c. 8·2∠ �π/6  ×  3·5∠ 2π/3 = 28·7∠π /2

d. 9·5∠ �40º  ×  3∠ �175º = 28·5∠ �215º  =  28·5∠ 145º

e. 2·2∠π   ×  7·4∠π /4 = 16·28∠ 5π/4  =  16·28∠ �3π/4
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f. 4·8∠ 135º  ÷  3·2∠ 70º = 15∠ 65º

g. 3·28∠ 150º  ÷  16·4∠ �80º = 0·2∠ 230º  =  0·2∠ �130º

h. 19∠ �100º  ÷  2∠ 80º = 9·5∠ �180º  =  9·5∠ 180º

i. 15∠ 3π/4  ÷  4∠ �2π/3 =  3·75∠ 17π/12  =  3·75∠ �7π/12

SAQ2-4-1 a. 4·5∠ 30º = 4·5 ejπ/6

b. 2·5 � j1·2 = 2·77∠ �0·4475 = 2·77 e�j0·4475

c. �10 � j12 = 15·62∠ �2·266 = 15·62 e�j2·266

d. 2 + j2√3 = 4∠ 1·047 = 4ej1·047
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SAQ2-4-2 a. (2∠ 20º)3 =  23∠ 3×20º = 8∠ 60º = 4·00 + j6·93

b. (3∠ �100º)4 =  34∠ 4×�100º = 81∠ �400º = 81∠ �40
= 62·05 � j52·07

c. (2 + j3)6 = (3·606∠ 56·31I)6 = 3·6�66∠ 6×56·31º
= 2197∠ 337·86º = 2197∠ �22·14º

= 2035 � j828

d. (�3 � j4)5 = (5∠ �126·87º)5 = 55∠ 5a�126·87
= 3125∠ �634·35º = 3125∠ 85·65º

= 237 + j3116

e. (3∠ �π/3)2 = 32∠ 2×�π/3 = 9∠ �2π/3
= �4·5 � j7·79

SAQ2-4-3

( )
( )

j j1
2 j

j j

sintan
cos

e e

½ e e

x x

x x

xx
x

−

−

≡

−
≡

+

≡ (ejx � e�jx)
j(ejx + e�jx)

≡ j(e�jx � ejx) Since 1/j  =  �j
(ejx + e�jx)

≡ j(1 � e2jx) multiplying top and bottom by ejx

(1 + e2jx)
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SAQ2-5-1 a. Principal root  =  25½∠ �120º ÷ 2 = 5∠ �60º
= 2·5 � j4·33

Hence square roots are 2·5 � j4·33 and �2·5 + j4·33

b. 4 � j12 = 13∠ �67·38º

Principal square root is 13½∠ �67·38º ÷ 2 = 3·606∠ �33·69
= 3 � j2

Hence, square roots are  3 � j2  and  �3 + j2

c. �24 � j70 = 74∠ �108·92º

Principal square root is  74½∠ �108·92º ÷ 2 = 8·602∠ �54·46º
= 5 � j7

Hence, square roots are  5 � j7  and  �5 + j7

d. 6 + j8 = 10∠ 53·13º

Principal square root is  10½∠ 53·13º ÷ 2 = 3·162∠ 26·57º
= 2·828 + j1·414

Hence, square roots are  2·828 + j1·414  and  �2·828 � j1·414

e. �j9 = 9∠ �90º

Principal square root is  9½∠ �90º ÷ 2 = 3∠ �45º
= 2·121 � j2·121

Hence, square roots are  2·121 � j2·121  and  �2·121 + j2·121
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SAQ2-5-2 a. One cube root is  1251/3∠ -150º ÷ 3

=  5∠ �50º   = 3·21 � j3·83

The other roots are 5∠ (�50º + 120º) =  5∠ 70º   = 1·71 + j4·70
      and 5∠ (�50º � 120º) =  5∠ �170º  = �4·92 � j0·87

b. �610 � j182  =  636·57∠ �163·39º

    One cube root is 636·571/3∠ �163·39º ÷ 3 = 8·602∠ �54·46º
= 5 � j7

The other roots are 8·602∠ (�54·46º + 120º) = 8·602∠ 65·54º
= 3·56 + j7·83

      and 8·602∠ (�54·46º � 120º) = 8·602∠ �174·46º

= 8·56 � j0·83

SAQ2-5-3 �1  =  1∠ 180º

One cube root is 11/3∠ 180º ÷ 3 = 1∠ 60º =  ½ + j
=  0·5 + j0·866

The other cube roots are 1∠ (60º + 120º) =  1∠ 180º =  �1

     and 1∠ (60º � 120º) =  1∠ �60º =  ½ + j
=  0·5 � j0·866

√3
 2

½ + j(√3)/2

j

120°
120°

Im
ag

in
ar

y

 ↑
�1 ·5 1 Real→
8-15

½ � j(√3)/2

�j

120°



Solutions to SAQs

CW/P-361.doc 8-16

SAQ2-5-4
Z0 = R j L

G j C
+
+

ω
ω

Substituting in the figures:

R + jωL = 5 + j62·83   = 63·03∠ 85·45º

G + jωC = (2 + j18·85) × 10�6  = 18·96 × 10�6∠ 83·94º

R j L
G j C

+
+

ω
ω

= 63 03 85 45
18 96 10 83 946

⋅ ∠ ⋅ °
⋅ × ∠ ⋅ °− = 3·324 × 106∠ 1·51º

∴  Z0 = √3·324 × 106∠ 1·51º ÷ 2 = 1·823 × 103∠ 0·755º

= 1823 + j24 ohms.

SAQ2-5-5 γ √(R + jωL)(G + jωC)

Substituting in the figures

R + jωL = 50 + j40·21

G + jω = j2·011 × 10�7

(R + jωL)(G + jωC) = j2·011 × 10�7(50 + j40·21)

= (�8·08 + j10·05) × 10�6

= 12·90 × 10�6∠ 128·8º

∴  γ  = √12·90 × 10�6∠ 128·8º ÷ 2 = 3·59 × 10�3∠ 64·4º

= (1·55 + j3·24) × 10�3
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SAQ2-6-1 (a + jb)2 + b2

= a2 � b2 + 2ajb + b2

= a2 + j2ab

Hence,  a2 + j2ab   = 4 + j12

Equating parts: a2    =  4
2ab =  12

Since a is positive, a = 2.
Substituting in the second equation gives  b = 3.

SAQ2-6-2       Rx � j/(ωCx)   = 24
0·1 � j/(ω3·5×10�6) 50

= 0·48

∴  Rx � j/(ωCx) = 0·48 {0·1 � j/(ω3·5×10�6)}

= 0·048 � j0·48/(ω3·5×10�6)

Equating real parts: Rx  =  0·048

Equating imaginary parts; 1/(ωCx) = 0·48/(ω3·5×10�6)

giving Cx = 3·5×10�6 ÷ 0·48

= 7·3 × 10�6
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SAQ2-7-1 2x2 + 12x + 50  =  0

Applying the formula for solution of quadratic equations;

x  = �12 ± √(122 � 4×2×50)
    2 × 2

= �12 ± √�256
4

= �12 ± j16 = �3 ± j4
      4

Hence, the roots are  �3 + j4  and  �3 � j4.

SAQ2-7-2 3x2 � 4x + 2  =  0

x  = 4 ±√[(�4)2 � 4×3×2]
2 × 3

= 4 ± √�8 = 4 ± 2√�2
     6      6

= 2/3 ± j 1/3 √2 = 0·67 ± j0·47

Hence, the roots to 2 decimal places are  0·67 + j0·47  and  0·67 � j0·47

SAQ2-7-3 a. x2 � 10x + 26 ≡ (x � α)(x � β)

where α, β are the roots of  x2 � 10x + 26  =  0.

Hence, α, β = 10 ± √[(�10)2 � 4×1×26]
    2 × 1

= 10 ± √�4 = 10 ± j2
      2      2

= 5 ± j

Hence,  x2 � 10x + 26  ≡  (x � 5 � j)(x � 5 + j)
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b. 9x2 � 12x + 13 ≡ 9(x � α)(x � β)

where α, β are the roots of  9x2 � 12x + 13  =  0.

Hence, α, β = 12 ± √[(�12)2 � 4×9×13]
     2 × 9

= 12 ± √�324
18

= 12 ± j18 = 2/3 ± j
     18

Hence,  9x2 � 12x + 13 ≡ 9(x � 2/3 � j)(x � 2/3 + j)

= (3x � 2 � j3)(3x � 2 + j3)

c. 2x2 + 8 ≡ 2(x � α)(x � β)

where α, β are the roots of  2x2 + 8  =  0.

2(x2 + 4)  =  0 ∴  x2 + 4  =  0 ∴  x2  =  �4

The roots are ± j2

Hence  2x2 + 8 ≡ 2(x � j2)(x + j2)
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SAQ2-7-4 x3 + 3x2 + 9x � 13 ≡ (x � 1)(ax2 + bx + c)

Dividing  x3 + 3x2 + 9x � 13  by  x � 1

        x2 + 4x  + 13
x�1 ) x3 + 3x2 + 9x � 13
        x3  �   x2

       4x2 + 9x � 13
       4x2 � 4x

     13x � 13
     13x � 13
                 0

Hence, x3 + 3x2 + 9x � 13 ≡ (x � 1)(x2 + 4x + 13)

≡ (x � 1) (x � α)(x � β)

Where α,β  = �4 ± √(42 � 4×1×13)
2 × 1

= �4 ± √�36 = �4 ± j6
      2      2

= �2 ± j3

Hence,  x3 + 3x2 + 9x � 13 ≡ (x � 1) (x + 2 � j3)(x + 2 + j3)


