



### THE ROYAL SCHOOL OF SIGNALS

## TRAINING PAMPHLET NO: 361

## DISTANCE LEARNING PACKAGE *CISM COURSE 2001* MODULE 2 – COMPLEX NUMBERS

Prepared by:

Tech Wing CISM Group

Issue date: May 2001



**DP** Bureau



*This publication is for training purposes only. It is not for general external use. It is not subject to amendment and must not be quoted as an authority.* 

| Authority:                  |             | (Name in blocks) |  |  |  |  |
|-----------------------------|-------------|------------------|--|--|--|--|
| Signature:                  |             |                  |  |  |  |  |
| Date:                       |             |                  |  |  |  |  |
| Review Date                 | Review Date | Review Date      |  |  |  |  |
| Signature                   | Signature   | Signature        |  |  |  |  |
|                             |             |                  |  |  |  |  |
| Authority:                  |             | (Name in blocks) |  |  |  |  |
| Signature:                  |             |                  |  |  |  |  |
| Date:                       |             |                  |  |  |  |  |
| Review Date                 | Review Date | Review Date      |  |  |  |  |
| Signature                   | Signature   | Signature        |  |  |  |  |
|                             |             |                  |  |  |  |  |
| Authority: (Name in blocks) |             |                  |  |  |  |  |
| Signature:                  |             | <u> </u>         |  |  |  |  |
| Date:                       |             |                  |  |  |  |  |
| Review Date                 | Review Date | Review Date      |  |  |  |  |
| Signature                   | Signature   | Signature        |  |  |  |  |

### <u>CONTENTS</u>

|                                                           | Page |
|-----------------------------------------------------------|------|
| Contents                                                  | i    |
| Chapter 1 - Real, Imaginary and Complex Numbers           | 1-1  |
| Chapter 2 - Complex Number Arithmetic in Rectangular Form | 2-1  |
| Chapter 3 - Polar Form                                    | 3-1  |
| Chapter 4 - Exponential Form and De Moivre's Theorem      | 4-1  |
| Chapter 5 - Roots of Complex Numbers                      | 5-1  |
| Chapter 6 - Equating Parts                                | 6-1  |
| Chapter 7 - Complex Roots of Equations                    | 7-1  |
| Chapter 8 - Solutions to SAQs                             | 8-1  |

## Chapter 1

# Real, imaginary and complex numbers

We saw in Section 1, chapter 1 that the *Real numbers* consist of rational and Imaginary irrational numbers and can be represented graphically by points on a line. We also numbers saw that certain equations have no solution amongst the real numbers. For example  $x^2 = -1$  has no *real* solution since multiplying any number, positive or negative, by itself gives a positive result. In order to provide solutions to such problems, the number system was extended and the so-called *imaginary numbers* were conceived. We define a number j such that  $j^2 = -1$ . Note that in pure mathematics texts, i is used. In electrical engineering we use j so as not to cause confusion with the symbol for current. j is called an imaginary number The term "imaginary" is perhaps an unfortunate one since it implies that imaginary numbers have no actual meaning. However, all numbers such as negative numbers and irrational numbers were originally an extension of the number system, necessary for the solution of new problems, and were therefore "imagined" by someone. We are all perfectly familiar with everyday applications of fractions and negative numbers, and as we shall see, imaginary numbers also have practical physical interpretations. The It is obvious that j does not fit anywhere on our Real Line. You will recall from Section 1 that multiplication by -1 gives a rotation of 180°. Since  $j^2 = -1$ , it j operator seems reasonable to assume that a multiplication by j gives a rotation of 90°. Multiplication by j again, ie by  $j^2 = -1$  gives a further 90° rotation to 180°, bringing us back on to the Real Line at -1. Multiplication by *j* rotates by 90°  $j \times j = -1$  $1 \times j = j$ Rotation of Rotation of 90° 90° \_1 Real  $\rightarrow$ Rotation of Rotation of 90°  $-j \times j = 1$ 900  $-1 \times j = -j$ j as a rotational operator

Multiplying –1 by j gives a further 90° rotation indicating that multiplying 1 by –j

would give a rotation of 90° clockwise ie  $-90^\circ$ . Multiplying -j by j again brings us back to 1.

Thus we can see that  $1 \times j = j$  rotation of 90° from 1  $j \times j = -1$  rotation of 180° from 1  $-1 \times j = -j$  rotation of 270° or -90° from 1  $-j \times j = 1$  rotation of 360° or 0° from 1

Thus the imaginary number j may be regarded as a *rotational operator*. This has useful applications to AC circuit theory where a quantity such as a voltage which is in *quadrature* may be represented as multiplied by j to give a rotation of 90° or multiplied by -j to give a rotation of  $-90^\circ$ .

SAQ2-1-1

Write down the values of:

| a. | j <sup>2</sup> | b. | j <sup>3</sup>    | c. | j <sup>4</sup>  |
|----|----------------|----|-------------------|----|-----------------|
| d. | $-j^2$         | e. | (-j) <sup>2</sup> | f. | j <sup>5</sup>  |
| g. | j <sup>6</sup> | h. | (-j) <sup>4</sup> | i. | —j <sup>4</sup> |

| The Argand diagram | Since multiplying a real number by j represents a rotation of 90°, we may represent the imaginary numbers graphically as lying on an axis at right angles to the real line.                                                                                                                                                                                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | AGINARY ->                                                                                                                                                                                                                                                                                                                                                    |
|                    | j5<br>j4<br>j3                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                                                                                                                                                                                                                                                               |
|                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         |
|                    | -j4<br>-j5 p361 fig2                                                                                                                                                                                                                                                                                                                                          |
|                    | This graphical representation is called an Argand diagram.                                                                                                                                                                                                                                                                                                    |
|                    | The imaginary numbers lie on the <i>imaginary axis</i> at 90° to the <i>real axis</i> , so for example, the imaginary number j3 would be obtained by rotating 90° from the real, number 3. The imaginary number $-j4$ would be obtained by rotating 90° from the real number $-4$ or by rotating $-90°$ from the real number +4.                              |
|                    | It does not matter whether we write, for example, j3 or 3j. They are the same thing. In electrical engineering, where we regard j as a rotational operator, we tend to write it in the form j3, implying that it is the real quantity 3 rotated by 90°, ie in quadrature. In mathematics texts, they tend to write it in the form 3j or more commonly, $3i$ . |
|                    | Note that the real and imaginary numbers do not coincide at any point other than zero.                                                                                                                                                                                                                                                                        |
|                    |                                                                                                                                                                                                                                                                                                                                                               |

.....

| SAQ2-1-2 | Simp | lify         |    |                    |    |                     |
|----------|------|--------------|----|--------------------|----|---------------------|
|          | a.   | $5 \times j$ | b. | 6 × –j             | c. | $j2 \times 3$       |
|          | d.   | j4 × j       | e. | $-j2 \times -j$    | f. | $-j2 \times j7$     |
|          | g.   | $(j2)^2$     | h. | (-j2) <sup>3</sup> | i. | -(-j2) <sup>4</sup> |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          |      |              |    |                    |    |                     |
|          | ,    |              |    |                    |    |                     |

Complex numbers

A *complex* number is a number which contains a real part and an imaginary part, ie z = a + jb is a **complex number**, where *a*, *b* are real numbers. The *real part* is *a* and the *imaginary part is jb*. On the Argand diagram a complex number is represented by a point in the plane.





### Section 2: Complex numbers - Real, imaginary & complex numbers

CW/P-361.doc

## Chapter 2

## Complex number arithmetic in rectangular form

| Complex<br>number                                    | The complex numbers follow the same basic laws as real numbers, ie If $U$ , $V$ , $W$ , are complex numbers: |                                             |                             |                                            |                              |                                                                                              |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------|--------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------|
| arithmetic                                           | U+UV                                                                                                         | V =<br>=                                    | V + U<br>VU                 | J                                          |                              | (commutative laws)                                                                           |
|                                                      | (U +<br>(UV                                                                                                  | - V) + W<br>)W                              | =                           | U + (V + W) $U(VW)$                        | V)                           | (associative laws)                                                                           |
|                                                      | U(V                                                                                                          | (T + W)                                     | =                           | UV + UW                                    |                              | (distributive law)                                                                           |
| Addition and<br>subtraction of<br>complex<br>numbers | The addit<br>horizontal<br>numbers,                                                                          | ion of comp<br>and vertica<br>simply add th | olex n<br>al com<br>heir re | umbers is s<br>aponents ar<br>al parts and | similar<br>e adde<br>add the | to the addition of vectors, ie the<br>d separately. To add 2 complex<br>eir imaginary parts. |
| numbers                                              | If $z_1 =$                                                                                                   | <i>a</i> +j <i>b</i> ,                      | $z_2 = c$                   | c + jd,                                    | then                         |                                                                                              |
|                                                      | $z_1 +$                                                                                                      | $z_2 = a + c + c$                           | - j <i>b</i> + j            | jd                                         | =                            | (a+c)+j(b+d)                                                                                 |
|                                                      |                                                                                                              |                                             |                             |                                            |                              |                                                                                              |
| Examples                                             |                                                                                                              | 2 + j3                                      | +                           | 4 + j5=                                    | 6 + j8                       |                                                                                              |
|                                                      |                                                                                                              | -5 + j6                                     | +                           | 2-j                                        | = .                          | -3 + j5                                                                                      |
|                                                      |                                                                                                              | 3-j2                                        | +                           | -1 + j7                                    | =                            | 2 + j5                                                                                       |
|                                                      | Subtractio                                                                                                   | on is similar:                              |                             |                                            |                              |                                                                                              |
|                                                      |                                                                                                              | If $z_1 = a + \frac{1}{2}$                  | j <i>b</i> ,                | $z_2 = c + jd,$                            | , 1                          | then                                                                                         |
|                                                      | $z_1 -$                                                                                                      | <i>Z</i> <sub>2</sub>                       | =                           | <i>a</i> – <i>c</i> + j <i>b</i> –         | -jd                          | = (a-c) + j(b-d)                                                                             |
|                                                      |                                                                                                              |                                             | <i>.</i> .                  |                                            |                              |                                                                                              |
| Examples                                             |                                                                                                              | 4 + j2 -                                    | $(3 + j^2)$                 | 4) =                                       | l – j2                       | -                                                                                            |
|                                                      |                                                                                                              | -6-15 -                                     | (3 – j                      | j7) =                                      | -9 + jź                      | 2                                                                                            |
|                                                      |                                                                                                              |                                             |                             |                                            |                              |                                                                                              |
|                                                      |                                                                                                              |                                             |                             |                                            |                              |                                                                                              |
|                                                      |                                                                                                              |                                             |                             |                                            |                              |                                                                                              |
|                                                      |                                                                                                              |                                             |                             |                                            |                              |                                                                                              |

#### Section 2: Complex numbers - Complex number arithmetic in rectangular form

SAQ2-2-1 For the following values of  $z_1$  and  $z_2$ , calculate (i)  $z_1 + z_2$ (ii)  $z_1 - z_2$ .  $z_1 + z_2$  $z_1$  $Z_2$  $z_1 - z_2$ 5 + j2 3 + j4 a. 4 + i9b. -3 + jc. 5 – j3 6 – j7 d. -3 + j28-j10 -2 - j-5 - j12e. If  $z_1 = 2 + j6$ , SAQ2-2-2  $z_2 = 5 - j2$ plot the following complex numbers as vectors on the Argand diagram below: d.  $z_1 + z_2$ b. *z*<sub>2</sub> a. *z*<sub>1</sub> c. −*z*<sub>2</sub> e.  $z_1 - z_2$ IMAGINARY → j9 j8 j7 j6 j5 j4 j3 j2 2 -8 -7 -6 -5 -4 -3 -2 -1 0 1 3 4 5 6 7 8 9 -j  $REAL \rightarrow$ -j2 -j3 -j4 -j5 -j6 -j7 -j8 p361 fig4

Do the rules for adding and subtracting complex numbers confirm the parallelogram rule for vectors? Sketch in the parallelograms and check.

| This part has<br>been left<br>blank for<br>working SAQs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applications to<br>AC networks                          | One of the most important uses of complex numbers is the representation of vector quantities in AC circuit theory. This section does not discuss AC theory which will be covered in <b>Section 5; Electrical Principles.</b> However, the student will probably be aware already, that a quantity such as a voltage rotated in phase by $\pm 90^{\circ}$ may be regarded as multiplied by $\pm j$ , and that an impedance is represented by                                                                         |
|                                                         | a complex number whose real part is the resistance and whose imaginary part is<br>the reactance, so that we can write the impedance of a series LCR circuit as<br>$Z = R + j(\omega L - 1/\omega C)$<br>The various components of an AC network may then be represented by complex<br>numbers and problems may be solved using complex number arithmetic. This<br>considerably simplifies the solution of AC networks.<br>All problems in this section may be solved without any knowledge of electrical<br>theory. |
| Use of calculators                                      | Some scientific calculators will perform complex arithmetic. Initially, you should<br>solve the SAQs without this facility, using the calculator for addition, subtraction,<br>multiplication, division, and trigonometric functions only, in order to become<br>familiar with the methods. Subsequently you could use the calculator to check<br>your answers.                                                                                                                                                     |

| Multiplication<br>of complex | Com<br>mult | plex numbers are m<br>plication, <b>rememberin</b>                             | ultipli<br>g that | ied together using the $j^2 = -1$ .                                                                                                        | he distributive | law | of |
|------------------------------|-------------|--------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|----|
| numbers                      |             | (a+jb)(c+jd)                                                                   | =                 | a(c+jd) + jb(c+jd)                                                                                                                         |                 |     |    |
|                              |             |                                                                                | =                 | $ac + jad + jbc + j^2bd$                                                                                                                   |                 |     |    |
|                              |             |                                                                                | =                 | ac + jad + jbc - bd                                                                                                                        |                 |     |    |
|                              |             |                                                                                | =                 | ac-bd + j(ad+bc)                                                                                                                           |                 |     |    |
| Examples                     | a.          | (2+j3)(4+j5)                                                                   | =                 | $\begin{array}{l} 8+j10+j12+j^215\\ 8+j10+j12-15\end{array}$                                                                               | = -7 + j22      |     |    |
|                              | b.          | (3-j7)(2+j6)                                                                   | =                 | $\begin{array}{c} 6+j18-j14-j^242\\ 6+j18-j14+42 \end{array}$                                                                              | = 48 + j4       |     |    |
|                              | c.          | (-2-j8)(1-j3)                                                                  | =                 | $\begin{array}{c} -2+j6-j8+j^224\\ -2+j6-j8-24\end{array}$                                                                                 | = -26 - j2      |     |    |
|                              | d.          | j(7 + j5)                                                                      | =                 | $j7 + j^25$<br>j7 - 5                                                                                                                      | = -5 + j7       |     |    |
|                              | e.          | $(1+j)^2$                                                                      | =                 | $1 + j^2 + j2$<br>1 - 1 + j2                                                                                                               | = j2            |     |    |
|                              | f.          | (1+j)(1-j)                                                                     | =                 | $1 - j + j - j^2$ $1 + 1$                                                                                                                  | = 2             |     |    |
|                              | g.          | $(^{1}/_{\sqrt{2}} + ^{j}/_{\sqrt{2}}) (-^{1}/_{\sqrt{2}} - ^{j}/_{\sqrt{2}})$ | =                 | $\begin{array}{c} -\frac{1}{2}-j\frac{1}{2}-j\frac{1}{2}-j^{2}\frac{1}{2}\\ -\frac{1}{2}-j\frac{1}{2}-j\frac{1}{2}+\frac{1}{2}\end{array}$ | = -j            |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |
|                              |             |                                                                                |                   |                                                                                                                                            |                 |     |    |

SAQ2-2-3 Calculate  $z_1 z_2$  in the form a + jb for the following complex numbers:

|    | <i>Z</i> <sub>1</sub>                | <i>Z</i> <sub>2</sub>                | <i>z</i> <sub>1</sub> <i>z</i> <sub>2</sub> |
|----|--------------------------------------|--------------------------------------|---------------------------------------------|
| a. | 5 + j2                               | 3 + j4                               |                                             |
| b. | -3 + j7                              | 6 + j8                               |                                             |
| c. | 4 j                                  | 5 + j2                               |                                             |
| d. | 12 + j7                              | 9 – j                                |                                             |
| e. | 3 – j2                               | -4 - j5                              |                                             |
| f. | -8-j3                                | -3 - j5                              |                                             |
| g. | $\frac{1}{2} + j \frac{\sqrt{3}}{2}$ | $\frac{1}{2} + j \frac{\sqrt{3}}{2}$ |                                             |



Complex The **conjugate** of the complex number a + jb is the number a - jb. For example, conjugate the conjugate of 2+j3 is 2-j3. The conjugate of 4-j5 is 4+j5. The conjugate of the complex number z if often denoted  $z^*$  or  $\overline{z}$ . **Rule:** To find the conjugate of a complex number, change the sign of the imaginary part. The complex conjugate is a very useful tool. The sum or product of a complex number and its conjugate are always real. (a+jb) + (a-jb) = 2a, which is real. Sum: **Product:**  $(a+jb)(a-jb) = a^2 - (jb)^2 = a^2 - (-b^2)$ =  $a^2 + b^2$ , which is real. Note the similarity to conjugate surds (section 1). The difference is that with complex numbers, the  $j^2$  causes a change in sign:  $(a + b)(a - b) = a^2 - b^2$  $(a + jb)(a - jb) = a^2 + b^2$ The complex number a + jb or a - jbRule: multiplied by its conjugate is:  $a^{2} + b^{2}$ Examples  $z^*$ z z\*  $z + z^{*}$ Z2 + j32 - j34 13 2 – j5 4 + i58 41 -2 + j3-2 - j3-4 13 -5 - j7 -5 + j774 -10  $\sqrt{2} - i\sqrt{2}$ 4  $\sqrt{2} + i\sqrt{2}$  $2\sqrt{2}$ 



| Division of<br>complex<br>numbers | To divide one complex number by another, we turn the divisor into a real number.<br>Therefore we multiply numerator (top) and denominator (bottom) by the complex<br>conjugate of the denominator, ie     |  |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                   | $\frac{x}{y} = \frac{x y *}{y y *}$                                                                                                                                                                       |  |  |  |  |
|                                   | By multiplying numerator and denominator by the same quantity we are, of course, multiplying it by 1, which does not change its value, however, it conveniently turns the denominator into a real number. |  |  |  |  |
| Examples                          | a. $\frac{2+j3}{4+j5}$                                                                                                                                                                                    |  |  |  |  |
|                                   | $= \frac{(2+j3)(4-j5)}{(4+j5)(4-j5)} = \frac{8-j10+j12+15}{4^2+5^2}$                                                                                                                                      |  |  |  |  |
|                                   | $= \frac{23 + j2}{41} = \frac{23}{41} + j\frac{2}{41}$                                                                                                                                                    |  |  |  |  |
|                                   | = $0.561 + j0.049$ to 3 decimal places.                                                                                                                                                                   |  |  |  |  |
|                                   | b. $\frac{7+j5}{3-j4}$                                                                                                                                                                                    |  |  |  |  |
|                                   | $= \frac{(7+j5)(3+j4)}{(3-j4)(3+j4)} = \frac{21+j28+j15-20}{3^2+4^2}$                                                                                                                                     |  |  |  |  |
|                                   | $= \frac{1+j43}{25} = \frac{1}{25} + j\frac{43}{25}$                                                                                                                                                      |  |  |  |  |
|                                   | = 0.04 + j 1.72                                                                                                                                                                                           |  |  |  |  |
|                                   | c. $\frac{1}{j} = \frac{1 \times -j}{j \times -j} = \frac{-j}{1} = -j$                                                                                                                                    |  |  |  |  |
|                                   | This last result is particularly useful, because we can express $-j$ as $\frac{1}{j}$                                                                                                                     |  |  |  |  |
|                                   | For example, later in AC theory we shall use the expression<br>$R - \frac{j}{\omega C} \equiv R + \frac{1}{j\omega C}$                                                                                    |  |  |  |  |
|                                   | This formula may be written in either form, whichever is convenient.                                                                                                                                      |  |  |  |  |

| 2-2-7 Evaluate the following, expressing the answers in the form $a + jb$ . |                                  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------|--|--|--|
| a.                                                                          | $\frac{3+j8}{1+j}$               |  |  |  |
| b.                                                                          | $\frac{5-j6}{6-j8}$              |  |  |  |
| с.                                                                          | $\frac{-8 - j7}{-7 - j}$         |  |  |  |
| d.                                                                          | $\frac{10}{2+j}$                 |  |  |  |
| e.                                                                          | $\frac{1}{R + j\omega L}$        |  |  |  |
|                                                                             | Evaluate<br>a.<br>b.<br>c.<br>d. |  |  |  |

SAQ2-2-8 The impedance of a series circuit is given by  $Z = Z_1 + Z_2 + Z_3$ Calculate Z, given  $Z_1 = 1000 + j250$  ohms,  $Z_2 = 2200 - j750$  ohms,  $Z_3 = 300 - j125$  ohms. SAQ2-2-9 The impedance of a parallel circuit is given by  $Z = \frac{Z_1 Z_2}{Z_1 + Z_2}$ Calculate Z, given  $Z_1 = 1.0 - j1.5 \text{ k}\Omega$ ,  $Z_2 = 5.0 + j3.2 \text{ k}\Omega$ .

| SAQ2-2-10 | If $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$         |                                     |
|-----------|--------------------------------------------------------------------------|-------------------------------------|
|           | calculate Z, given $Z_1 = 2 + j3$ ,                                      | $Z_2 = 1 - j,$ $Z_3 = 3 + j4$       |
| SAQ2-2-11 | Solve the following equation for z.<br>$\frac{3z}{1-j} + \frac{3z}{1-j}$ | $\frac{3z}{j} \qquad \frac{4}{3-j}$ |

Chapter 3

Polar form

Polar form of aThe form a + jb of a complex number is called the *rectangular form* or the<br/>*Cartesian form*. The number is specified by its Real coordinate a and its<br/>Imaginary coordinate b.









| Polar to<br>rectangular | Polar to rectangular conversion is usually more straightforward since most calculators will evaluate sines and cosines of any sized angle without having to worry about the quadrant.                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Since, $a = r \cos \theta$ , $b = r \sin \theta$<br>$r \angle \theta \equiv r \cos \theta + j r \sin \theta$<br>$\equiv r (\cos \theta + j \sin \theta)$                                                                      |
| Examples                | a. Convert $4 \angle 30^{\circ}$ to rectangular form.<br>$4 \angle 30^{\circ} = 4(\cos 30^{\circ} + j \sin 30^{\circ})$<br>= 4(0.866 + j 0.5)<br>= 3.464 + j 2                                                                |
|                         | b. Convert $5 \cdot 4 \angle -60^\circ$ to rectangular form.<br>$5 \cdot 4 \angle -60^\circ = 5 \cdot 4(\cos(-60^\circ) + j\sin(-60^\circ))$<br>$= 5 \cdot 4(0 \cdot 5 - j \ 0 \cdot 866)$<br>$= 2 \cdot 7 - j \ 4 \cdot 677$ |
|                         | c. Convert $6.8 \angle 135^{\circ}$ to rectangular form.<br>$6.8 \angle 135^{\circ} = 6.8(\cos 135^{\circ} + j \sin 135^{\circ})$<br>= 6.8(-0.707 + j 0.707)<br>= -4.808 + j 0.808                                            |
|                         | d. Convert $10 \angle -150^{\circ}$ to rectangular form.<br>$10 \angle -150^{\circ} = 10(\cos(-150^{\circ}) + j\sin(-150^{\circ}))$<br>= 10(-0.866 - j0.5)<br>= -8.66 - j5                                                    |

| Example  | e. Convert $6 \angle -2\pi/3$ to rectangular form.                                                                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | It should be remembered that angles are always assumed to be in <i>radians</i> unless otherwise specified. eg $\angle 2^{\circ}$ means 2 <i>degrees</i> , but $\angle 2$ means 2 <i>radians</i> . |
|          | $6 \angle -2\pi/3 = 6(\cos(-2\pi/3) + j\sin(-2\pi/3))$<br>= 6(-0.5 - j 0.866)<br>= -3 - j 5.196                                                                                                   |
| SAQ2-3-1 | Convert the following complex numbers to the polar form, $r \angle \theta$ , expressing $\theta$ in degrees correct to one decimal place.                                                         |
|          | a. 6+j8                                                                                                                                                                                           |
|          | b7 + j5                                                                                                                                                                                           |
|          | c. $-2.5 - j3.6$                                                                                                                                                                                  |
|          | d. 5-j12                                                                                                                                                                                          |
|          |                                                                                                                                                                                                   |

| SAQ2-3-2 | Express the following complex numbers in polar form: |                                                                                        |  |  |
|----------|------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
|          | a.                                                   | j2·5                                                                                   |  |  |
|          | b.                                                   | —j7                                                                                    |  |  |
|          | c.                                                   | -5                                                                                     |  |  |
|          | d.                                                   | 3.8                                                                                    |  |  |
| SAQ2-3-3 | Conv<br>exac                                         | vert the following complex numbers to polar form, expressing the angle tly in radians. |  |  |
|          | a.                                                   | 3 + j3                                                                                 |  |  |
|          | b.                                                   | $-\sqrt{3}+j$                                                                          |  |  |
|          | c.                                                   | -2 - j2√3                                                                              |  |  |
|          |                                                      |                                                                                        |  |  |

| SAQ2-3-4 | Express in the form $a + jb$ : |           |  |  |
|----------|--------------------------------|-----------|--|--|
|          | a.                             | 5∠32°     |  |  |
|          | b.                             | 6·2∠140°  |  |  |
|          | c.                             | 0·8∠–155° |  |  |
|          | d.                             | 4·9∠–20°  |  |  |
|          | e.                             | 3∠π/4     |  |  |
|          |                                |           |  |  |

| SAQ2-3-5              | Express in rectangular form:                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                       | a. 8∠π/3                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                       | b. 5∠5π/6                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                       | c. $\sqrt{2} \angle -\pi/4$                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                       | d. 3∠−π/2                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                       | e. 7·52∠π                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Use of<br>Calculators | Note: Most scientific calculators will do polar/rectangular conversion.<br>Before using this facility you should master the methods in this chapter,<br>checking your answers by calculator. Having mastered the theory, you may<br>use the calculator for all subsequent problems and for circuit theory<br>questions. Some calculators will also perform complex arithmetic in<br>rectangular form. |  |  |  |

Addition and subtraction of complex numbers must be done in rectangular form, Multiplication and division in however multiplication and division are much more easily performed in polar form polar form using the following rules: If  $r_1 \angle \theta_1$ ,  $r_2 \angle \theta_2$  are 2 complex numbers:  $r_1 \angle \theta_1 \times r_2 \angle \theta_1 = r_1 r_2 \angle (\theta_1 + \theta_2)$ ie when multiplying; *multiply* the magnitudes and *add* the angles.  $\frac{r_1 \angle \theta_1}{r_2 \angle \theta_2} = \frac{r_1}{r_2} \angle (\theta_1 - \theta_2)$ ie when dividing; *divide* the magnitudes and *subtract* the angles. Examples  $2\angle 20^{\circ} \times 3\angle 55^{\circ}$  $= 6 \angle 75^{\circ}$ a. b.  $4 \angle -45^{\circ} \times 5 \angle 130^{\circ} = 20 \angle 85^{\circ}$  $1.5 \angle 80^{\circ} \times 6 \angle 150^{\circ} = 9 \angle 230^{\circ} = 9 \angle (230^{\circ} - 360^{\circ})$ =  $9 \angle -130^{\circ}$ c.  $= 9 \angle -130^{\circ}$ *Note:* Subtract 360° to make  $-180^{\circ} < \theta \le 180^{\circ}$ d.  $2.4 \angle -100^{\circ} \times 3.5 \angle -150^{\circ} = 8.4 \angle -250^{\circ} = 8.4 \angle (-250^{\circ} + 360^{\circ})$  $= 8.4 \angle 110^{\circ}$ *Note:* Add 360° to make  $-180^{\circ} < \theta \le 180^{\circ}$  $6 \angle 75^{\circ} \div 3 \angle 30^{\circ} = 2 \angle 45^{\circ}$ e. f.  $7 \angle -56^{\circ} \div 2 \angle -150^{\circ} = 3 \cdot 5 \angle 94^{\circ}$  $24 \angle 120^{\circ} \div 6 \angle -130^{\circ} = 4 \angle 250^{\circ} = 4 \angle (250^{\circ} - 360^{\circ})$ g.  $= 4 \angle -110^{\circ}$ *Note:* Subtract 360° to make  $-180^{\circ} < \theta \le 180^{\circ}$  $5 \cdot 5 \angle -80^\circ \div 1 \cdot 1 \angle 200^\circ = 5 \angle -280^\circ = 5 \angle (-280^\circ + 360^\circ)$ h.  $= 5 \swarrow 80^{\circ}$ *Note:* Add 360° to make  $-180^{\circ} < \theta \le 180^{\circ}$ Rotating by any multiple of  $360^{\circ}$  obviously gives the same values of *a* and *b*.

| Proof of<br>multiplication<br>and division | The proofs are given below of the rules for multiplication and division in polar form. These proofs are given for interest only. You may skip over them if you prefer.                                |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tutes                                      | In these proofs, we make use of the trigonometric identities:<br>$sin(A \pm B) \equiv sin A cos B \pm cos A sin B$                                                                                    |  |  |  |  |
|                                            | $\cos(A \pm B) \equiv \cos A \ \cos B \ \mp \ \sin A \ \sin B$                                                                                                                                        |  |  |  |  |
|                                            | $\cos^2 A + \sin^2 A \equiv 1$                                                                                                                                                                        |  |  |  |  |
| Multiplication                             | $r_1 \angle \theta_1 \times r_2 \angle \theta_2 = r_1(\cos \theta_1 + j \sin \theta_1) r_2(\cos \theta_2 + j \sin \theta_2)$                                                                          |  |  |  |  |
|                                            | $= r_1 r_2 (\cos \theta_1 + j \sin \theta_1) (\cos \theta_2 + j \sin \theta_2)$                                                                                                                       |  |  |  |  |
|                                            | $= r_1 r_2 \{\cos \theta_1 \cos \theta_2 + j^2 \sin \theta_1 \sin \theta_2 + j \sin \theta_1 \cos \theta_2 + j \cos \theta_1 \sin \theta_2\}$                                                         |  |  |  |  |
|                                            | $= r_1 r_2 \left\{ (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + j(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \right\}$                                               |  |  |  |  |
|                                            | $= r_1 r_2 \{\cos \theta_1 + \cos \theta_2) + j \sin (\theta_1 + \theta_2)\}$                                                                                                                         |  |  |  |  |
|                                            | $=r_1r_2\angle(\theta_1+\theta_2)$                                                                                                                                                                    |  |  |  |  |
| Division                                   | $\frac{r_1 \angle \theta_1}{r_2 \angle \theta_2} = \frac{r_1 (\cos \theta_1 + j \sin \theta_1)}{r_2 (\cos \theta_2 + j \sin \theta_2)} $ (multiply top and bottom by conjugate)                       |  |  |  |  |
|                                            | $= \frac{\mathbf{r}_1}{\mathbf{r}_2} - \frac{(\cos\theta_1 + j\sin\theta_1)(\cos\theta_2 - j\sin\theta_2)}{(\cos\theta_2 + j\sin\theta_2)(\cos\theta_2 - j\sin\theta_2)}$                             |  |  |  |  |
|                                            | $= \frac{r_1}{r_2} \frac{\cos \theta_1 \cos \theta_2 - j^2 \sin \theta_1 \sin \theta_2 + j \sin \theta_1 \cos \theta_2 - j \cos \theta_1 \sin \theta_2}{\cos^2 \theta_2 - j^2 \sin^2 \theta_2}$       |  |  |  |  |
|                                            | $= \frac{\mathbf{r}_1}{\mathbf{r}_2} - \frac{\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2 + \mathbf{j}(\sin\theta_1\cos\theta_2 - \cos\theta_1\sin\theta_2)}{\cos^2\theta_2 + \sin^2\theta_2}$ |  |  |  |  |
|                                            | $= \frac{\mathbf{r}_1}{\mathbf{r}_2} \frac{\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)}{1}$                                                                                                |  |  |  |  |
|                                            | $= \frac{r_1}{r_2} \angle (\theta_1 - \theta_2)$                                                                                                                                                      |  |  |  |  |
|                                            |                                                                                                                                                                                                       |  |  |  |  |
|                                            |                                                                                                                                                                                                       |  |  |  |  |
| SAQ2-3-6 | Eval | uate in polar form:                                    |
|----------|------|--------------------------------------------------------|
|          | a.   | 3·2∠80° × 4·5∠23°                                      |
|          | b.   | 7·4∠120° × 8∠75°                                       |
|          | c.   | $8\cdot 2 \angle -\pi/6 \times 3\cdot 5 \angle 2\pi/3$ |
|          | d.   | 9·5∠–40° × 3∠–175°                                     |
|          | e.   | $2\cdot 2 \angle \pi \times 7 \cdot 4 \angle \pi/4$    |
|          | f.   | 4·8∠135° ÷ 3·2∠70°                                     |
|          | g.   | 3·28∠150° ÷ 16·4∠-80°                                  |
|          | h.   | 19∠-100° ÷ 2∠80°                                       |
|          | i.   | $15 \angle 3\pi/4 \div 4 \angle -2\pi/3$               |
|          |      |                                                        |

Exponential form and De Moivre's theorem

| De Moivre's theorem                           | It follows from the rule for multiplication that:                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | $(r \angle \theta)^2 = r \times r \angle (\theta + \theta) = r^2 \angle 2\theta$                                                                                                                                                                                                                                                                                                                                        |
|                                               | $(r \angle \theta)^3 = r \angle \theta \times (r \angle \theta)^2 = r^3 \angle 3\theta$                                                                                                                                                                                                                                                                                                                                 |
|                                               | We can see that by successive multiplication that $(r \angle \theta)^n = r^n \angle n\theta$                                                                                                                                                                                                                                                                                                                            |
|                                               | If $r = 1$ , we can write the above as $(\cos \theta + j \sin \theta)^n = (\cos n \theta + j \sin n \theta)$                                                                                                                                                                                                                                                                                                            |
|                                               | This is called de Moivre's theorem. It can be shown that it is true for any value of n, not just positive integers. De Moivre's theorem and the rules for multiplication and division in polar form, can be proved more directly from the exponential form of a complex number which we shall now consider.                                                                                                             |
| Exponential<br>form of a<br>complex<br>number | Something about the above rules may seem familiar from Section 1, chapter 3. When multiplying we <i>add</i> the angles. When dividing we <i>subtract</i> the angles. When raising to a power we <i>multiply</i> the angle by the power. These look like the rules of <b>indices</b> . This is no coincidence, since $\theta$ is in fact an imaginary index. The exponential form, sometimes called Euler's identity is: |
|                                               | $\cos \theta + j \sin \theta \equiv e^{j\theta}$                                                                                                                                                                                                                                                                                                                                                                        |
|                                               | in the form $e^{j\theta}$ , $\theta$ is always measured in <b>radians.</b>                                                                                                                                                                                                                                                                                                                                              |
|                                               | Thus the exponential form of a complex number is                                                                                                                                                                                                                                                                                                                                                                        |
|                                               | $r \angle \theta \equiv r e^{j\theta}$<br>$\theta$ measured in <b>radians</b>                                                                                                                                                                                                                                                                                                                                           |
|                                               | A proof of Euler's identity is given on the next page, however, this identity is often taken as a definition of $e^{j\theta}$ . All the trigonometric identities can be derived from it.                                                                                                                                                                                                                                |
|                                               | The proof is given for interest only and you may skip it if you wish. The exponential form is very important in signal processing theory and should be committed to memory.                                                                                                                                                                                                                                             |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Proof of Euler's identity | Let $z = \cos \theta + j \sin \theta$                                                                                                  |  |  |  |  |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                           | Differentiating with respect to $\theta$ ;                                                                                             |  |  |  |  |  |  |  |
|                           | $\frac{dz}{d\theta} = -\sin\theta + j\cos\theta$                                                                                       |  |  |  |  |  |  |  |
|                           | $= j^2 \sin \theta + j \cos \theta$                                                                                                    |  |  |  |  |  |  |  |
|                           | $= j(\cos \theta + j \sin \theta)$                                                                                                     |  |  |  |  |  |  |  |
|                           | = jz                                                                                                                                   |  |  |  |  |  |  |  |
|                           | $\therefore  \frac{\mathrm{d}z}{\mathrm{d}\theta} = \mathrm{j}z$                                                                       |  |  |  |  |  |  |  |
|                           | Integrating, $\int \frac{dz}{z} = \int j d\theta$                                                                                      |  |  |  |  |  |  |  |
|                           | In $z = j\theta + c$ where c is an arbitrary constant.                                                                                 |  |  |  |  |  |  |  |
|                           | Hence, $z = e^{j\theta + c}$                                                                                                           |  |  |  |  |  |  |  |
|                           | $\therefore  \cos \theta + j \sin \theta  =  e^{j\theta + c}$                                                                          |  |  |  |  |  |  |  |
|                           | To determine c, put $\theta = 0$ , giving $1 = e^c$ $\therefore$ $c = 0$                                                               |  |  |  |  |  |  |  |
|                           | Hence, $\cos \theta + j \sin \theta = e^{j\theta}$                                                                                     |  |  |  |  |  |  |  |
|                           | The rules for multiplication, division, and De Moivre's theorem now follow directly from the rules of indices, ie                      |  |  |  |  |  |  |  |
| Multiplication            | $r_1 \angle \theta_1 \times r_2 \angle \theta_2 = r_1 e^{j\theta_1} \times r_2 e^{j\theta_2} = r_1 r^2 e^{j(\theta_1 + \theta_2)}$     |  |  |  |  |  |  |  |
|                           | $= r_1 r_2 \angle (\theta_1 + \theta_2)$                                                                                               |  |  |  |  |  |  |  |
| Division                  | $r_1 \angle \theta_1 \div r_2 \angle \theta_2 = r_1 e^{j\theta_1} \div r_2 e^{j\theta_2} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}$ |  |  |  |  |  |  |  |
|                           | $= \frac{r_1}{r_2} \not \angle (\theta_1 - \theta_2)$                                                                                  |  |  |  |  |  |  |  |
| De Moivre                 | $(r \angle \theta)^n = (r e^{j\theta})^n = r^n e^{jn\theta} = r^n \angle n\theta$ (for any <i>n</i> )                                  |  |  |  |  |  |  |  |
|                           |                                                                                                                                        |  |  |  |  |  |  |  |

| SAQ2-4-1 | Writ | e the following complex numbers in the form $r e^{j\theta}$ . |
|----------|------|---------------------------------------------------------------|
|          | a.   | 4·5∠30°                                                       |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          | b.   | 2.5 - j1.2                                                    |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          | c.   | -10-j12                                                       |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          | d.   | $2 + j2\sqrt{3}$                                              |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |
|          |      |                                                               |

| Powers of<br>complex<br>numbers                                                         | De Moivre's theorem may be used to find powers of complex numbers which would be very laborious in rectangular form.                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Example                                                                                 | Evaluate $(0.9 + j1.2)^7$                                                                                                                                                                |  |  |  |
|                                                                                         | Expanding this in rectangular form would take some time.<br>In polar form, $0.9 + j1.2 = 1.5 \angle 53.13^{\circ}$ .                                                                     |  |  |  |
|                                                                                         | By De Moivre's theorem, $(1.5\angle 53.13^{\circ})^7 = 1.5^7\angle 53.13^{\circ} \ge 7$<br>= $17.09\angle 372^{\circ} = 17.09\angle 12^{\circ}$                                          |  |  |  |
|                                                                                         | = 16.72 + j3.53                                                                                                                                                                          |  |  |  |
| Complex conjugate                                                                       | $1/e^{j\theta} = e^{-j\theta}$ ; ie $e^{j\theta}$ and $e^{-j\theta}$ are inverses of each other.                                                                                         |  |  |  |
| <i>.</i> , | $e^{j\theta}$ and $e^{-j\theta}$ are also complex conjugates of each other.                                                                                                              |  |  |  |
|                                                                                         | Proof: From Euler's identity, $e^{j\theta} \equiv \cos \theta + j \sin \theta$                                                                                                           |  |  |  |
|                                                                                         | You should recall from trigonometry that<br>$\cos(-\theta) = \cos \theta$ , ie cosine is an <i>even</i> function.<br>$\sin(-\theta) = -\sin \theta$ , ie sine is an <i>odd</i> function. |  |  |  |
|                                                                                         | Hence, $e^{-j\theta} \equiv \cos \theta - j \sin \theta$ , which is the conjugate of $e^{j\theta}$ .                                                                                     |  |  |  |
| SAQ2-4-2                                                                                | Using De Moivre's theorem evaluate the following in polar form and convert to rectangular form.                                                                                          |  |  |  |
|                                                                                         | a. $(2\angle 20^{\circ})^{3}$                                                                                                                                                            |  |  |  |
|                                                                                         |                                                                                                                                                                                          |  |  |  |
|                                                                                         |                                                                                                                                                                                          |  |  |  |
|                                                                                         |                                                                                                                                                                                          |  |  |  |
|                                                                                         |                                                                                                                                                                                          |  |  |  |
|                                                                                         |                                                                                                                                                                                          |  |  |  |



Exponential form of sine and cosine

Above, we proved the important identity  $\cos \theta + j \sin \theta \equiv e^{j\theta}$ Remember that  $\theta$  is measured in **radians**. Putting  $\theta$  equal to x and = -x in the identity, we get:  $\cos x + j \sin x \equiv e^{jx} \qquad (1).$   $\cos x - j \sin x \equiv e^{-jx} \qquad (2).$ Adding (1) and (2) we obtain  $2 \cos x \equiv e^{jx} + e^{-jx}$ Hence,  $\cos x \equiv e^{jx} + e^{-jx}$ Subtracting (2) from (1) we obtain  $2j \sin x \equiv e^{jx} - e^{-jx}$ Hence,  $\sin x \equiv e^{jx} + e^{-jx}$ Hence,  $\sin x \equiv e^{jx} + e^{-jx}$ 

These two expressions may be taken as definitions of the circular functions, sine and cosine. They are very important in signal processing theory and should be remembered. To emphasise their importance, they are repeated below. x is of course measured in radians.

$$\cos x \equiv \frac{e^{jx} + e^{-jx}}{2}$$
$$\sin x \equiv \frac{e^{jx} - e^{-jx}}{2j}$$

As 1/j = -j, we can also write the expression for  $\sin x$  as:

$$\sin x \qquad \equiv \quad j^{1/2}(e^{-jx} - e^{jx})$$

It should be appreciated that although  $\sin x$  and  $\cos x$  are defined in terms of complex numbers, that the sines and cosines of real numbers are real. Why is this so? You will recall from chapter 1 that the sum of a complex number and its conjugate is purely real. Also the difference of a complex number and its conjugate is purely imaginary. We have seen that  $e^{jx}$  and  $e^{-jx}$  are complex conjugates.  $\therefore e^{jx} + e^{-jx}$  must be real, hence  $\frac{1}{2}(e^{jx} + e^{-jx})$  is real.  $e^{jx} - e^{-jx}$  must be imaginary, hence  $\frac{1}{2i}(e^{jx} - e^{-jx})$  is real. SAQ2-4-3 Given that tan x ≡  $\sin x$  $\cos x$ Write down expressions for tan x in terms of b.  $e^{j2x}$  and  $e^{-j2x}$  $e^{jx}$  and  $e^{-jx}$ a.

Roots of complex numbers

We have seen that every real number has 2 square roots. For example, the square Roots of a roots of 4 are  $\pm \sqrt{4} = \pm 2$ . complex number These roots are180° apart, since multiplication by -1 represents a rotation of 180° (c.f. Section 1, chapter 1). Similarly, every complex number (which includes the real numbers) has 2 square roots. Consider the complex number -5 + i12. This has the square roots 2 + i3 and -2 - i3. Check:  $(2+j3)^2 = 2^2 + (j3)^2 + 2 \times 2 \times j3 = 4 - 9 j12 = -5 + j12$  $(-2 - j3)^2 = (-2)^2 + (-j3)^2 + 2 \times (-2) \times (-j3) = 4 - 9 + j12 = -5 + j12$ MAGINARY Note that these roots also are 180° apart, since each root is -1 times the other. j5 j4 ie the square roots of 2+j3 j3 -5 + j12 are  $\pm (2 + j3)$ . j2 The 2 roots have the same -6 -5 -4 -3 -2 -1 2 3 4 5 6  $REAL \rightarrow$ modulus.  $2 + j3 = 3.6 \angle 56.3^{\circ}$ -j2 -j3  $-2 - j3 = 3.6 \angle (56.3^{\circ} - 180^{\circ})$ -2-i3-j4  $= 3.6 \angle -123.7^{\circ}$ -j5 p361 fiq15 The 2 square roots of any complex number have the same modulus and their angles are 180° apart. This can be proved from De Moivre's theorem. Consider the 2 numbers,  $z_1 = r \angle \theta$ ,  $z_2 = r \angle (\theta \pm 180^\circ)$ , which have the same modulus, r, and are separated by 180°.  $z_1^2 = r^2 \angle 20$ ,  $z_2^2 = r^2 \angle (20 \pm 360^\circ)$  by De Moivre. Now,  $\cos(\phi \pm 360^{\circ}) + j \sin(\phi \pm 360^{\circ}) \equiv \cos \phi + j \sin \phi$ Hence,  $z_1^2 = z_2^2$ .  $\therefore$   $z_1$  and  $z_2$  are both square roots of the same number.

|                   | Furthermore, since they have the same modulus, <i>r</i> , and there is a rotation of 180° between them: $z_2 = -z_1$                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Finding the       | De Moivre's theorem gives us a way of finding square roots. Putting $n = \frac{1}{2}$ ,                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| complex<br>number | $(r \angle \theta)^{\frac{1}{2}} = r^{\frac{1}{2}} \angle \frac{1}{2} \theta$                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                   | Hence, $r^{\frac{1}{2}} \angle \frac{1}{2} \theta$ is a square root of $r \angle \theta$ . This is called the principal value. The other root is the negative of this, which is $r^{\frac{1}{2}} \angle (\frac{1}{2}\theta \pm 180^\circ)$ . Whether we add or subtract 180° depends which gives us an angle in the conventional range of $-18 < \theta \le 180^\circ$ .                    |  |  |  |  |
| Examples          | a. Find the square roots of $9 \angle 60^{\circ}$<br>The principal root is $\sqrt{9} \angle \frac{1}{2} \times 60^{\circ} = 3 \angle 30^{\circ} = 2 \cdot 6 + j1 \cdot 5$<br>The other root is $3 \angle (30^{\circ} - 180^{\circ}) = 3 \angle -150^{\circ} = -2 \cdot 6 - j1 \cdot 5$<br>In this instance, we <i>subtract</i> 180° giving -150°, rather than adding which would give 210°. |  |  |  |  |
|                   | Hence the square roots are $\pm (2.6 + j1.5)$ .                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                   | b. Find the square roots of $-3 + j4$                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                   | Converting to polar form, $-3 + j4 = 5 \angle 126.87^{\circ}$                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                   | The principal root is $\sqrt{5} \angle \frac{1}{2} \times 126 \cdot 87^{\circ} = 2 \cdot 236 \angle 63 \cdot 43^{\circ} = 1 + j2$<br>The other root is $2 \cdot 236 \angle (63 \cdot 43^{\circ} - 180^{\circ}) = 2 \cdot 236 \angle -116 \cdot 57^{\circ} = -1 - j2$                                                                                                                        |  |  |  |  |
|                   | Hence the square roots of $-3 + j4$ are $\pm(1 + j2)$                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                   | c. Find the square roots of $-12 - j35$                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                   | Converting to polar form, $-12 - j35 = 37 \angle -108.92^{\circ}$                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                   | The principal root is $\sqrt{37} \angle \frac{1}{2} \times -108.92^{\circ} = 6.08 \angle -54.46^{\circ} = 3.54 - j4.95$<br>The other root is $6.08 \angle (-54.46^{\circ} + 180^{\circ}) = 6.08 \angle 125.54^{\circ} = 3.54 + j4.95$                                                                                                                                                       |  |  |  |  |
|                   | In this instance, we <i>add</i> 180° to give 125.54°                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                   | Hence the square roots of $-12 - j35$ are $\pm (3.54 - j4.95)$ .                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                   | It should be evident, by now, that we only need to find the principal value in rectangular form and multiply it by $-1$ to give the other root.                                                                                                                                                                                                                                             |  |  |  |  |

| SAQ2-5-1 | Find trectan | the 2 square gular form. | roots of the | e following | numbers | and | express | the | answers | in |
|----------|--------------|--------------------------|--------------|-------------|---------|-----|---------|-----|---------|----|
|          | a. 2         | 25∠–120°                 |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          | b ·          | 5 – i12                  |              |             |         |     |         |     |         |    |
|          | 0.           | 5 512                    |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          | с            | -24 - j70                |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          | d.           | 6 + j8                   |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |
|          | e -          | _i9                      |              |             |         |     |         |     |         |    |
|          |              | J-                       |              |             |         |     |         |     |         |    |
|          |              |                          |              |             |         |     |         |     |         |    |

Further roots of Cube Roots complex numbers A complex number has 3 cube roots. They have the same modulus and are separated by  $360^\circ \div 3 = 120^\circ$ . Again, this can be proved by De Moivre's theorem.  $z_1 = r \angle \theta$ ,  $z_2 = r \angle (\theta + 120^\circ)$ ,  $z_3 = r \angle (\theta - 120^\circ)$ are 3 complex numbers of the same modulus, r, separated by  $120^{\circ}$ . By De Moivre's theorem:  $z_1^3 = r^3 \angle 30$  $z_2^3 = r^3 \angle (30+360^\circ)$  $z_3^3 = r^3 \angle (30 - 360^\circ)$ Now,  $\cos(\phi \pm 360^\circ) + j \sin(\phi \pm 360^\circ) \equiv \cos \phi + j \sin \phi$ hence,  $z_1^3 = z_2^3 = z_3^3$  $\therefore$   $z_1, z_2, z_3$  are all cube roots of the same number. Therefor, by De Moivre's theorem one cube root of  $r \angle \theta$  is  $r^{1/3} \angle \theta \div 3$ . Finding the The other 2 roots are  $r^{1/3} \angle (\theta \div 3 + 120^\circ)$  and  $r^{1/3} \angle (\theta \div 3 - 120^\circ)$ . cube root of a complex number Find the cube roots of  $8 \angle 60^{\circ}$ a. Example One cube root is  $8^{1/3} \angle 60^{\circ} \div 3 = 2 \angle 20^{\circ} = 1.88 \pm j 0.68$ The other roots are  $2\angle(20^{\circ}+120^{\circ}) = 2\angle 140^{\circ} = 1.53 + j1.29$ and  $2\angle (20^{\circ}-120^{\circ}) = 2\angle -100^{\circ} = -0.35 - j1.97$ **IMA**GINARY j3 **j**2 -1.53 + 1.29 120° »<mark>1.88 + j0.68</mark>  $REAL \rightarrow$ -3 -2 120° 120° -0.35 - 11.97 p361 fla16 The 3 cube roots are shown on the Argand diagram, each of magnitude 2,

separated by angles of 120°.



- SAQ2-5-2 Find the 3 cube roots of the following complex numbers and express the results in rectangular form.
  - a. 125∠–150°

b. -610-j182

SAQ2-5-3 Find the 3 cube roots of -1 in rectangular form and sketch them on the Argand diagram.



The characteristic impedance of a transmission line is given by: SAQ2-5-4  $Z_0 = \sqrt{\frac{\mathbf{R} + \mathbf{j}\omega\mathbf{L}}{\mathbf{G} + \mathbf{j}\omega\mathbf{C}}}$ Evaluate the principal value of  $Z_0$  where R = 5 ohms, G = 2 × 20<sup>-6</sup> siemens, L = 10<sup>-5</sup> henrys, C = 3 × 10<sup>-12</sup> farads,  $\omega = 2\pi \times 10^6$  rad/s. SAQ2-5-5 The propagation coefficient of a transmission line is defined as  $\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$ Evaluate the principal value of  $\gamma$  where R = 50, L = 0.0004, C = 2 × 10<sup>-12</sup>, G is negligible,  $\omega = 2\pi \times 16000$ 

Equating parts

Equating real In chapter 1 we saw that the real and imaginary numbers coincide only at zero. A and imaginary real number has no imaginary part and an imaginary number has no real part. This enables us to equate the real and imaginary parts of complex numbers. parts If a + jb = c + jdthen a = c and b = die 2 complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. It follows that if a + jb = 0, then a = 0 and b = 0. Thus an equation in a complex variable is actually 2 equations in one. This process has particular applications in circuit theory where we have 2 quantities which are in quadrature and we can solve for both at once. Example Find *a* and *b* in the equation  $\frac{a+2}{2a+jb} = 1-j3$ Multiplying both sides by 2a + jb; a + 2 = (2a + jb)(1 - j3)a + 2 = 2a + 3b - 6 ja + jb2 = a + 3b + i(-6a + b)Hence, a + 3b = 2 and -6a + b = 0Solving this pair of simultaneous equations gives  $a = \frac{2}{19}$ ,  $b = \frac{12}{19}$ .

| Example | The condition for balance of a 4 arm bridge is:                                                                                   |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | $\frac{Z_1}{Z_2} = \frac{Z_3}{Z_4}$                                                                                               |  |  |  |
|         | It is used to measure the unknown inductance $L_x$ and Resistance $R_x$ of a coil, in terms of known components.                  |  |  |  |
|         | $Z_1 = \mathbf{R}_x + j\omega \mathbf{L}_x$ ohms, is the impedance of the unknown coil.                                           |  |  |  |
|         | $Z_2 = 2 + j\omega 0.1$ ohms, is the impedance of a standard coil.                                                                |  |  |  |
|         | $Z_3 = 94.5 \Omega$ is a known resistance.                                                                                        |  |  |  |
|         | $Z_4 = 25 \Omega$ is a known resistance.                                                                                          |  |  |  |
|         | We can therefore write the equation                                                                                               |  |  |  |
|         | $\frac{R_x + j\omega L_x}{2 + j\omega 0 \cdot 1} = \frac{94 \cdot 5}{25}$                                                         |  |  |  |
|         | $R_x + j\omega L_x = 3.78(2 + j\omega 0.1)$                                                                                       |  |  |  |
|         | $R_x + j\omega L_x = 7.56 + j\omega 0.378$                                                                                        |  |  |  |
|         | Equating real parts: $R_x = 7.56$ ohms                                                                                            |  |  |  |
|         | Equating imaginary parts: $\omega L_x = \omega 0.378$                                                                             |  |  |  |
|         | $\therefore$ L <sub>x</sub> = 0.378 Henrys.                                                                                       |  |  |  |
|         | You may note that this measurement is independent of the frequency $\omega$ at which it is performed.                             |  |  |  |
|         | This technique of equating real and imaginary parts enables us to solve for 2 unknowns which are in quadrature, at the same time. |  |  |  |
|         |                                                                                                                                   |  |  |  |
|         |                                                                                                                                   |  |  |  |
|         |                                                                                                                                   |  |  |  |

| SAQ2-6-1 | If $(a+jb)^2 + b^2 = 4 + j12$ where <i>a</i> is positive, find <i>a</i> and <i>b</i> . |
|----------|----------------------------------------------------------------------------------------|
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
| SAQ2-6-2 | The condition for balance of a 4 arm bridge is                                         |
|          | $\frac{Z_1}{Z_2} = \frac{Z_3}{Z_4}$                                                    |
|          | If $Z_1 = R_x - j/(\omega C_x)$                                                        |
|          | $Z_2 = 0.1 - j/(\omega  3.5 \times 10^{-6})$                                           |
|          | $Z_3 = 24$                                                                             |
|          | $Z_4 = 50$                                                                             |
|          | Find the values of $R_x$ and $C_x$                                                     |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |
|          |                                                                                        |

Complex roots of equations

| that a quadratic equation is of the form                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ax^2 + bx + c = 0$                                                                                                                                                                                                                                                      |
| and has 2 roots which are given by                                                                                                                                                                                                                                       |
| $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                                                                                                                                                                                                                                 |
| You will also recall that the expression $b^2 - 4ac$ is called the <b>discriminant</b> and that if the discriminant is negative it has no real square root. Thus, even if the coefficients <i>a</i> , <i>b</i> and <i>c</i> are real, the equation has no real solution. |
| However, we know that the square root of a negative real number may be expressed<br>as an "imaginary" number, and so such an equation has a complex solution.                                                                                                            |
| Solve the equation $x^2 - 4x + 13 = 0$                                                                                                                                                                                                                                   |
| Applying the formula:                                                                                                                                                                                                                                                    |
| $x = \frac{4 \pm \sqrt{(4^2 - 4 \times 1 \times 13)}}{2 \times 1}$                                                                                                                                                                                                       |
| $=$ $\frac{4\pm\sqrt{(16-52)}}{2}$                                                                                                                                                                                                                                       |
| $= \frac{4\pm\sqrt{-36}}{2}$                                                                                                                                                                                                                                             |
| $= \frac{4\pm j6}{2} = 2\pm j3$                                                                                                                                                                                                                                          |
| Thus the 2 roots are $2 + j3$ and $2 - j3$ . It is evident that if the roots are complex, then they will be <i>complex conjugates</i> .                                                                                                                                  |
| We can state as a rule:                                                                                                                                                                                                                                                  |
| The equation $ax^2 + bx + c = 0$<br>where a, b, c are real numbers,                                                                                                                                                                                                      |
| has complex conjugate roots if $b^2 - 4ac < 0$                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                          |

| SAQ2-7-1 | Solve the quadratic equation $2^{2} + 12 + 50 = 0$                                                       |
|----------|----------------------------------------------------------------------------------------------------------|
|          | $2x^2 + 12x + 50 = 0$                                                                                    |
| SAQ2-7-2 | Solve the following quadratic equation, expressing the roots to 2 decimal places.<br>$3x^2 - 4x + 2 = 0$ |

Complex In Section 1, chapter 3, we also saw that a quadratic expression may be resolved factors into 2 linear factors. This is restated below.  $ax^{2} + bx + c \equiv a (x - \alpha) (x - \beta)$ where  $\alpha$ ,  $\beta$  are the roots of the quadratic equation  $ax^2 + bx + c = 0$ If the roots,  $\alpha$ ,  $\beta$  are complex, then the factors are complex. Factorize  $x^2 + 4x + 13$ Example  $x^{2} + 4x + 13 \equiv (x - \alpha) (x - \beta)$ where  $\alpha$ ,  $\beta$  are the roots of  $x^2 + 4x + 13 = 0$  $= \frac{-4 \pm \sqrt{(16 - 52)}}{2} = \frac{-4 \pm \sqrt{-36}}{2}$ Hence,  $\alpha$ ,  $\beta$  $= \frac{-4 \pm j6}{2} = -2 \pm j3$ Therefore the factors are  $\{x - (-2 + i3)\}$   $\{x - (-2 - i3)\}$ = (x+2-j3)(x+2+j3)Factorize  $4x^2 - 4x + 5$ Example  $4x^2 - 4x + 5 \equiv 4(x - \alpha) (x - \beta)$ where  $\alpha$ ,  $\beta$  are the roots of  $4x^2 - 4x + 5 = 0$  $= \frac{4 \pm \sqrt{(16 - 80)}}{8} = \frac{4 \pm \sqrt{-64}}{8}$ Hence,  $\alpha$ ,  $\beta$  $=\frac{4\pm j8}{8}$  =  $\frac{1}{2}\pm j$ Hence factors are  $4(x - \frac{1}{2} - j)(x - \frac{1}{2} + j)$ =  $2(x - \frac{1}{2} - j) 2(x - \frac{1}{2} + j)$ = (2x-1-j2)(2x-1+j2)

| SAQ2-7-3 | Resolve into complex factors |
|----------|------------------------------|
|          | a. $x^2 - 10x + 26$          |
|          | b. $9x^2 - 12x + 13$         |
|          | c. $2x^2 + 8$                |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |
|          |                              |



| Polynomials of degree <i>n</i> | In general, a polynomial of the $n^{\text{th}}$ degree has $n$ linear factors, ie<br>If $P_n$ is a polynomial of degree $n$ with real coefficients.                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                | $P_n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                | $\equiv a_n(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)(x-\varepsilon) \cdots (x-\zeta)$                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                                | n factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                | where $\alpha$ , $\beta$ , $\gamma$ , $\delta$ , $\varepsilon$ , $+ \cdots$ , $\zeta$ , are the <i>n</i> roots of the equation $P_n = 0$ which may be real or complex. Complex roots always occur in conjugate pairs. If <i>n</i> is odd, then at least one root is real. If any of the roots are equal then the corresponding factor is repeated. Such a root is called a repeated root. Repeated roots are always real. The graph will touch the <i>x</i> axis without crossing, at a repeated root. |  |  |  |  |  |  |  |  |
|                                | There are occasions in the study of networks where we may wish to resolve a polynomial into real and/or imaginary factors. The solution of polynomial equations higher than quadratics is very difficult, and equations of degree higher than 4 can usually only be solved by numerical methods on a computer. Such methods will be used later on your course.                                                                                                                                         |  |  |  |  |  |  |  |  |
| Example                        | If some of the roots are known, it may be possible to extract the others by division.<br>The third degree polynomial $x^3 - 8x^2 + 37x - 50$ has one real factor $(x - 2)$ and 2 complex factors. Find all the factors.                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                | Applying algebraic division (refer Section 1 chapter 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                | $x-2\frac{x^{2}-6x+25}{x^{3}-8x^{2}+37x-50}}{\frac{x^{3}-2x^{2}}{-6x^{2}+37x-50}}$ $-\frac{6x^{2}+12x}{25x-50}$ $-\frac{5x-50}{0}$                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                                | There is no remainder, hence $x^3 - 8x^2 + 37x - 50 \equiv (x - 2)(x^2 - 6x + 25)$                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                                | Now $x^2 - 6x + 25 \equiv (x - \alpha)(x - \beta)$<br>where $\alpha$ , $\beta$ are the roots of $x^2 - 6x + 25 = 0$ . $\therefore \alpha$ , $\beta = \frac{6 \pm \sqrt{(36 - 100)}}{2}$                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                | $= 3 \pm j4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                | Hence, $x^3 - 8x^2 + 37x - 50 \equiv (x - 2)(x - 3 - j4)(x - 3 + j4)$                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |

The equation  $x^4 + 8x^3 + 23x^2 + 30x + 18 = 0$  has a repeated root at x = -3 and 2 Example complex roots. By division and solving the quadratic equation, find all the roots. If -3 is a repeated root, then (x + 3)(x + 3) must be factors. Dividing the polynomial by  $(x + 3)^2$ ,  $x^{2} + 6x + 9 \frac{x^{2} + 2x + 2}{x^{4} + 8x^{3} + 23x^{2} + 30x + 18} \frac{x^{4} + 6x^{3} + 9x^{2}}{2x^{3} + 14x^{2} + 30x + 18} \frac{2x^{3} + 12x^{2} + 18x}{2x^{2} + 12x + 18} \frac{2x^{2} + 12x + 18}{2x^{2} + 12x + 18}$ 0 Hence  $x^4 + 8x^3 + 23x^2 + 30x + 18 \equiv (x+3)^2(x+2x+2)$ Now,  $x^2 + 2x + 2 = 0$  has the roots  $\frac{-2 \pm \sqrt{(4-8)}}{2} = \frac{-2 \pm \sqrt{(-4)}}{2} = -1 \pm j$ Hence the roots are x = -3, -3, -1+j, -1-j. A sketch of the graph is shown below for interest. Note that the graph touches the xaxis at the repeated root.  $v = x^4 + 8x^3 + 23x^2 + 30x + 18$ 18 4 -2 -1 0 1  $x \rightarrow$ p361 fig21

| SAQ2-7-4 | The cubic polynomial $x^3 + 3x^2 + 9x - 13$ has one real factor $(x - 1)$ and 2 complex factors. Find all the factors and so write down the complete factorized expression. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |
|          |                                                                                                                                                                             |

## Solutions to SAQs

Solutions to SAQs

| SAQ2-1-1 | a. | $j^2 = -1$ | b.   | j <sup>3</sup> =j                     |    | с.        | $j^4 = 1$     |             |  |  |  |
|----------|----|------------|------|---------------------------------------|----|-----------|---------------|-------------|--|--|--|
|          | d. | $-j^2 = 1$ | e.   | $(-j)^2 = -$                          | -1 | f.        | $j^5 = j$     |             |  |  |  |
|          | g. | $j^6 = -1$ | h.   | (-j) <sup>4</sup> =                   | 1  | i.        | $-j^4 = -j^4$ | 1           |  |  |  |
| SAQ2-1-2 | a. | j5         | b.   | -j6                                   |    | c.        | j6            |             |  |  |  |
|          | d. | -4         | e.   | -2                                    |    | f.        | 14            |             |  |  |  |
|          | g. | -4         | h.   | —j8                                   |    | i.        | -16           |             |  |  |  |
| SAQ2-1-3 | a. |            | Num  | ber                                   | ŀ  | Real part | Ima           | ginary part |  |  |  |
|          |    |            | 5 +  | j4                                    |    | 5         |               | j4          |  |  |  |
|          |    |            | 3 –  | j2                                    |    | 3         |               | —j2         |  |  |  |
|          |    |            | -1 - | - j                                   |    | -1        |               | —j          |  |  |  |
|          |    |            | 6    |                                       |    | 6         |               | 0           |  |  |  |
|          |    |            | j8   |                                       | 0  |           |               | j8          |  |  |  |
|          |    |            | √9   |                                       |    | 3         |               | 0           |  |  |  |
|          |    |            | √_9  |                                       |    | 0         |               | j3          |  |  |  |
|          | b. |            |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |    | x5+j4     |               |             |  |  |  |
|          |    |            |      |                                       |    |           | p;            | 361 fig22   |  |  |  |
|          |    |            |      |                                       |    |           | ·             |             |  |  |  |

## Solutions to SAQs

| 5402.2.1 |                                             |           |         | _                   |     |        | _                            |            | _              | L                        |                   |              |                                                | _           |
|----------|---------------------------------------------|-----------|---------|---------------------|-----|--------|------------------------------|------------|----------------|--------------------------|-------------------|--------------|------------------------------------------------|-------------|
| SAQ2-2-1 |                                             |           |         | $\frac{z_1}{5+i2}$  |     |        | $\frac{z_2}{z_1}$            |            | <u>71</u><br>8 | $+ z_2$<br>+ i6          |                   | 7            | 2 <u>1 - 2</u><br>2 _ i                        | 7<br>2      |
|          |                                             |           | a.<br>h | $\frac{3+j2}{3+i}$  |     | -      | , j <del>4</del><br>1 + i0   |            | 1              | $\frac{1}{10}$           |                   |              | <u>2 - j</u><br>7                              | 2<br>;8     |
|          |                                             |           | 0       | $\frac{-3+1}{5-13}$ |     |        | $\frac{1}{5}$ $\frac{1}{17}$ |            | 11             | - j10                    |                   |              | . <u>,                                    </u> | јо<br>i4    |
|          |                                             |           | d       | -3 + i2             |     |        | $\frac{1}{2} - \frac{1}{10}$ |            | 5              |                          |                   | _1           | <u> </u>                                       | i12         |
|          |                                             |           | е.<br>  | -2 - i              |     |        | $\frac{1}{5-i12}$            |            | 7              | i13                      |                   | 3            | + i1                                           | 11          |
|          |                                             |           | 0.      | 2 J                 |     | •      | ) j12                        |            | ,              | J15                      |                   | 5            | ' J '                                          |             |
| SAQ2-2-2 | a.                                          | $z_1 = 2$ | + j6    |                     |     | b.     | <i>z</i> <sub>2</sub> =      | 5 – j      | 2              |                          |                   |              |                                                |             |
|          | c. $-z_2 = -5 + j2$ d. $z_1 + z_2 = 7 + j4$ |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          | e. $z_1 - z_2 = -3 + j8$                    |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         | 77                  |     | ל<br>א | j9                           |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     | 2 • | INAI   | j8<br>i7                     |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     | AG     | j/<br>i6                     | <b>,</b> Z | Z <sub>1</sub> |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     | 5      | j5                           |            |                |                          | 7                 | <br>⊥7.      |                                                |             |
|          |                                             |           |         |                     |     |        | j4                           |            |                |                          | -• <sup>∠</sup> 1 | τ <b>Ζ</b> 2 |                                                |             |
|          |                                             |           |         | -72                 |     |        | j3                           |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        | j2                           |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        | J                            |            |                |                          |                   |              |                                                |             |
|          |                                             |           | -8 -7   | -6 -5 -4            | -3  | -2 -1  | 0 1<br>-i                    | 2          | 3 4            | 56                       | 7                 | 8 9          |                                                |             |
|          |                                             |           |         |                     |     |        | j2                           |            |                | $\bullet^{\mathbb{Z}_2}$ |                   | REA          | <i>۲</i> ۲ –                                   | <b>&gt;</b> |
|          |                                             |           |         |                     |     |        | j3                           |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        | -j4                          |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        | -j5                          |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        | jo<br>i7                     |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        | j8                           |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   | ļ            | 5361 fi                                        | g23         |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |
|          |                                             |           |         |                     |     |        |                              |            |                |                          |                   |              |                                                |             |





It can be seen that the vector  $z_1 + z_2$  is the diagonal of the parallelogram constructed with  $z_1$  and  $z_2$ .

Similarly  $z_1 - z_2 = z_1 + (-z_2)$  is the diagonal of the parallelogram constructed with  $z_1$  and  $-z_2$ .

This shows that the 2 methods give the same results.

Note that  $-z_2$  may be constructed by rotating  $z_2$  through 180°.

## Solutions to SAQs

SAQ2-2-3

|    | <i>z</i> <sub>1</sub>                | <i>Z</i> <sub>2</sub>                | $Z_1 Z_2$                             |
|----|--------------------------------------|--------------------------------------|---------------------------------------|
| a. | 5 + j2                               | 3 + j4                               | 7 + j26                               |
| b. | -3 + j7                              | 6 <i>+j8</i>                         | -74 + j18                             |
| c. | -4 - j                               | 5 + j2                               | -18-j13                               |
| d. | 12 + j7                              | 9 – j                                | 115 + j51                             |
| e. | 3-j2                                 | -4 - j5                              | -22 - j7                              |
| f. | -8 - j3                              | -3 - j5                              | 9 + j49                               |
| g. | $\frac{1}{2} + j \frac{\sqrt{3}}{2}$ | $\frac{1}{2} + j \frac{\sqrt{3}}{2}$ | $-\frac{1}{2} + j \frac{\sqrt{3}}{2}$ |

**Solutions to SAQs** 



CW/P-361.doc
| SAQ2-2-6 | $-z^*$ represents a reflection in the <b>imaginary</b> axis.                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------|
| SAQ2-2-7 | a. $\frac{3+j8}{1+j} = \frac{(3+j8)(1-j)}{(1+j)(1-j)} = \frac{11+j5}{2} = 5\cdot5+j2\cdot5$                                    |
|          | b. $\frac{5-j6}{6-j8} = \frac{(5-j6)(6+j8)}{(6-j8)(6+j8)} = \frac{78+j4}{100} = 0.78+j0.04$                                    |
|          | c. $\frac{-8-j7}{-7-j} = \frac{(-8-j7)(-7+j)}{(-7-j)(-7+j)} = \frac{63+j41}{50} = 1\cdot26+j0\cdot82$                          |
|          | d. $\frac{10}{2+j} = \frac{10(2-j)}{(2+j)(2-j)} = \frac{20-j10}{5} = 4-j2$                                                     |
|          | e. $\frac{1}{R + j\omega L} = \frac{R - j\omega L}{(R + j\omega L)(R - j\omega L)} = \frac{R - j\omega L}{R^2 + \omega^2 L^2}$ |
|          | $\frac{R}{R^2 + \omega^2 L^2} - j\frac{\omega L}{R^2 + \omega^2 L^2}$                                                          |
|          |                                                                                                                                |
| SAQ2-2-8 | Z = (1000 + j250) + (2200 - j750) + (300 - j125)  ohms                                                                         |
|          | + $3500 - j625$ ohms.                                                                                                          |
|          |                                                                                                                                |
|          |                                                                                                                                |
|          |                                                                                                                                |

| SAQ2-2-9  | Working ir    | n kΩ      |                                                                                                                                                                     |
|-----------|---------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Ζ             | =         | $\frac{Z_1 Z_2}{Z_1 + Z_2}$                                                                                                                                         |
|           |               | =         | $\frac{(1 \cdot 0 - j1 \cdot 5)(5 \cdot 0 + j3 \cdot 2)}{(1 \cdot 0 - j1 \cdot 5) + (5 \cdot 0 + j3 \cdot 2)}$                                                      |
|           |               | =         | $\frac{9 \cdot 8 - j4 \cdot 3}{6 \cdot 0 + j1 \cdot 7} = \frac{(9 \cdot 8 - j4 \cdot 3)(6 \cdot 0 - j1 \cdot 7)}{(6 \cdot 0 + j1 \cdot 7)(6 \cdot 0 - j1 \cdot 7)}$ |
|           |               | =         | $\frac{51 \cdot 49 - j42 \cdot 46}{38 \cdot 89} = 1 \cdot 324 - j \cdot 1092 \text{ k}\Omega$                                                                       |
| SAQ2-2-10 | $\frac{1}{Z}$ | =         | $\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$                                                                                                                     |
|           |               | =         | $\frac{1}{2+j3}$ + $\frac{1}{1-j}$ + $\frac{1}{3+j4}$                                                                                                               |
|           |               | =<br>(mul | $\frac{2-j3}{13} + \frac{1+j}{2} + \frac{3-j4}{25}$<br>tiplying numerators and denominators by the conjugates)                                                      |
|           |               | =         | 1.154 - j0.231 + 0.5 + j0.5 + 0.12 - j0.16                                                                                                                          |
|           |               | =         | 0.774 + j0.109                                                                                                                                                      |
|           | Ζ             | =         | $\frac{1}{0 \cdot 774 + j0 \cdot 109} = \frac{0 \cdot 774 - j0 \cdot 109}{0 \cdot 611}$                                                                             |
|           |               | =         | 1.27 - j0.18                                                                                                                                                        |
|           |               |           |                                                                                                                                                                     |
|           |               |           |                                                                                                                                                                     |

| SAQ2-2-11 |    | $\frac{3z}{1-j} + \frac{3z}{j} = \frac{4}{3-j}$                               |
|-----------|----|-------------------------------------------------------------------------------|
|           |    | $3z\left[\frac{1}{1-j} + \frac{1}{j}\right] = \frac{4}{3-j}$                  |
|           |    | $3z\left[\frac{1+j}{2} - j\right] = \frac{4}{3-j}$                            |
|           |    | $3z(\frac{1}{2} - j\frac{1}{2}) = \frac{4}{3-j}$                              |
|           |    | $\frac{3z}{2}(1-j) \qquad = \qquad \frac{4}{3-j}$                             |
|           |    | $3z/2 = \frac{4}{(3-j)(1-j)}$                                                 |
|           |    | $=$ $\frac{4}{2-j4}$ $=$ $\frac{2}{1-j2}$                                     |
|           |    | $= \frac{2(1+j2)}{5}$                                                         |
|           |    | $\therefore z = \frac{4(1+j2)}{15} = \frac{4}{15} + j\frac{8}{15}$            |
| SAQ2-3-1  | a. | z = 6 + j8                                                                    |
|           |    | $r = \sqrt{6^2 + 8^2} = 10$                                                   |
|           |    | $\tan^{-1}(8/6) = 53 \cdot 1^{\circ}$ . $\theta$ lies between 0 and 90°       |
|           |    | $\therefore \theta = 53 \cdot 1^{\circ}$                                      |
|           |    | Hence, $z = 10 \angle 53 \cdot 1^{\circ}$                                     |
|           | b. | z = -7 + j5                                                                   |
|           |    | $r = \sqrt{(-7)^2 + 5^2} = 8.6$                                               |
|           |    | $\tan^{-1}(-5/7) = -35.5^{\circ}$ . $\theta$ lies between 90° and 180°        |
|           |    | $\therefore \theta = -35 \cdot 5^{\circ} + 180^{\circ} = 144 \cdot 5^{\circ}$ |
|           |    | Hence, $z = 8.6 \angle 144.5^{\circ}$                                         |

|          | c. | z = -2.5 - j3.6                                                                  |
|----------|----|----------------------------------------------------------------------------------|
|          |    | $r = \sqrt{(-2 \cdot 5)^2 + (-3 \cdot 6)^2} 4.38$                                |
|          |    | $\tan^{-1}(3.6/2.5) = 55.2^{\circ}$ . $\theta$ lies between -90° and 180°.       |
|          |    | $\therefore \theta = 55 \cdot 2^{\circ} - 180^{\circ} = -124 \cdot 8^{\circ}$    |
|          |    | Hence, $z = 4.38 \angle -124.8^{\circ}$                                          |
|          | d. | z = 5 - j12                                                                      |
|          |    | $r = \sqrt{5^2 + (-12)^2} = 13$                                                  |
|          |    | $\tan^{-1}(-12/5) = -67.4^{\circ}$ . $\theta$ lies between 0 and $-90^{\circ}$ . |
|          |    | $\therefore \theta = -67 \cdot 4^{\circ}$                                        |
|          |    | Hence, $z = 13 \angle -67 \cdot 4^{\circ}$                                       |
| SAQ2-3-2 | a. | $j2.5 = 2.5 \angle 90^{\circ}$                                                   |
|          | b. | $-j7 = 7 \angle -90^{\circ}$                                                     |
|          | C. | $-5 = 5 \angle 180^{\circ}$                                                      |
|          | d. | $3.8 = 3.8 \angle 0^{\circ}$                                                     |
| SAQ2-3-3 | a. | z = 3 + j3                                                                       |
|          |    | $r = \sqrt{3^2 + 3^2} = 4.24$                                                    |
|          |    | $\tan^{-1}(3/3) = \pi/4$ . $\theta$ lies between 0 and $\pi/2$                   |
|          |    | $\therefore \theta = \pi/4$                                                      |
|          |    | Hence $z = 4.24 \angle \pi/4$                                                    |
|          |    |                                                                                  |
|          |    |                                                                                  |
|          |    |                                                                                  |

|          | b. | $z = -\sqrt{3} + j$                                                          |
|----------|----|------------------------------------------------------------------------------|
|          |    | $r = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = 2$                              |
|          |    | $\tan^{-1}(-1/\sqrt{3}) = -\pi 6. \ \theta$ lies between $\pi/2$ and $\pi$ . |
|          |    | $\therefore \theta = -\pi/6 + \pi = 5\pi/6$                                  |
|          |    | Hence $z = 2\angle 5\pi/6$                                                   |
|          | c. | $z = -2 - j2\sqrt{3}$                                                        |
|          |    | $r = \sqrt{(-2)^2 + (-2\sqrt{3})^2} = 4$                                     |
|          |    | $\tan^{-1}(\sqrt{3}) = \pi/3$ . $\theta$ lies between $-\pi/2$ and $\pi$ .   |
|          |    | $\therefore \theta = \pi/3 - \pi = -2\pi/3$                                  |
|          |    | Hence, $z = 4 \angle -2\pi/3$                                                |
| SAQ2-3-4 | a. | $5 \angle 32^{\circ} = (\cos 32^{\circ} + j \sin 32^{\circ})$                |
|          |    | = 5(0.8480 + j0.5299) = 4.24 + j2.65                                         |
|          | b. | $6.2 \angle 140^\circ = 6.2(\cos 140^\circ + j \sin 140^\circ)$              |
|          |    | $= 6 \cdot 2(-0.7660 + j0.6428) = -4.75 + j3.99$                             |
|          | c. | $0.8 \angle -155^{\circ} = 0.8(\cos -155^{\circ} + j \sin -155^{\circ})$     |
|          |    | = 0.8(-0.9063 - j0.4226) = -0.73 - j0.34                                     |
|          | d. | $4.9 \angle -20^{\circ} = 4.9(\cos -20^{\circ} + j \sin -20^{\circ})$        |
|          |    | = 4.9(0.9397 - j0.3420) = 4.60 - j1.68                                       |
|          | e. | $3 \angle \pi/4 = 3(\cos \pi/4 + j \sin \pi/4)$                              |
|          |    | $= 3(0.7071 + j \ 0.7071) = 2.12 + j2.12$                                    |
|          |    |                                                                              |
|          |    |                                                                              |

| SAQ2-3-5 | a. | $8 \angle \pi/3 = 8(\cos \pi/3 + j)$                               | $\sin \pi$ | /3)    |                                                      |
|----------|----|--------------------------------------------------------------------|------------|--------|------------------------------------------------------|
|          |    | = 8(0.5 + j0.8660)                                                 | =          | 4.00   | + j6·93                                              |
|          | b. | $5\angle 5\pi/6 = 5(\cos 5\pi/+)$                                  | j sin 5    | 5π/6)  |                                                      |
|          |    | = 5(-0.8660 + j0.5)                                                | =          | -4·33  | 3 + j2·50                                            |
|          | c. | $\sqrt{2} \leq -\pi/4 = \sqrt{2}(\cos -\pi)$                       | /4 + j     | sin –7 | t/4)                                                 |
|          |    | $= \sqrt{2}(1/\sqrt{2} - j 1/\sqrt{2})$                            | =          | 1 – j  |                                                      |
|          | d. | $3 \angle -\pi/2 = 3(\cos -\pi/2)$                                 | + j sir    | n —π/2 | )                                                    |
|          |    | = 3(0-j)                                                           | =          | -j3    |                                                      |
|          | e. | $7.5 \angle \pi = 7.5(\cos \pi + j)$                               | $\sin \pi$ | )      |                                                      |
|          |    | $= 7 \cdot 5(01 + j0)$                                             | =          | -7.5   |                                                      |
| SAQ2-3-6 | a. | 3·2∠80° × 4·5∠23°                                                  |            | =      | 14·4∠103°                                            |
|          | b. | 7·4∠120° × 8∠75°                                                   |            | =      | 59·2∠195° = 59·2∠-165°                               |
|          | c. | $8\cdot 2 \angle -\pi/6 \times 3\cdot 5 \angle 2\pi/3$             |            | =      | 28·7∠π/2                                             |
|          | d. | 9·5∠–40° × 3∠–175°                                                 |            | =      | $28.5 \angle -215^{\circ} = 28.5 \angle 145^{\circ}$ |
|          | e. | $2\cdot 2 \measuredangle \pi \times 7\cdot 4 \measuredangle \pi/4$ |            | =      | $16.28 \angle 5\pi/4 = 16.28 \angle -3\pi/4$         |
|          |    |                                                                    |            |        |                                                      |

|          | f. | 4·8∠135° - | ÷ 3·22 | ∠70°                  | =     | 15∠65°    |                          |
|----------|----|------------|--------|-----------------------|-------|-----------|--------------------------|
|          | g. | 3·28∠150°  | ÷ 16   | ·4∠–80°               | =     | 0·2∠230°  | = 0·2∠-130°              |
|          | h. | 19∠–100°   | ÷ 2∠   | 80°                   | =     | 9.5∠–180  | ° = 9.5∠180°             |
|          | i. | 15∠3π/4 ÷  | - 4∠-2 | 2π/3                  | = 3.7 | ′5∠17π/12 | $= 3.75 \angle -7\pi/12$ |
| SAQ2-4-1 | a. | 4·5∠30°    | =      | 4·5 e <sup>jπ/6</sup> |       |           |                          |
|          | b. | 2·5 – j1·2 | =      | 2•77∠–0•44            | 475   | =         | $2.77 e^{-j0.4475}$      |
|          | c. | -10-j12    | =      | 15.62∠-2.2            | 266   | =         | $15.62 e^{-j2.266}$      |
|          | d. | 2 + j2√3   | =      | 4∠1.047               |       | =         | $4e^{j1\cdot047}$        |
|          |    |            |        |                       |       |           |                          |
|          |    |            |        |                       |       |           |                          |
|          |    |            |        |                       |       |           |                          |
|          |    |            |        |                       |       |           |                          |

Solutions to SAQs

| SAQ2-4-2 | a. | $(2\angle 20^{\circ})^3$ | $= 2^3$         | ∠3×20°                | =                            | 8∠60°    | =      | 4.00 + j6.93                                                |
|----------|----|--------------------------|-----------------|-----------------------|------------------------------|----------|--------|-------------------------------------------------------------|
|          | b. | (3∠–100°)                | $4^{4} = 3^{4}$ | ∠4×–100°              | =                            | 81∠–400° | =      | 81∠–40<br>62·05 – j52·07                                    |
|          | c. | $(2+j3)^6$               | =               | (3·606∠56<br>2197∠337 | 5·31I) <sup>6</sup><br>7·86° |          | =<br>= | 3·6–6 <sup>6</sup> ∠6×56·31°<br>2197∠–22·14°<br>2035 – j828 |
|          | d. | $(-3 - j4)^5$            | =               | (5∠–126·8<br>3125∠–63 | 37°) <sup>5</sup><br>34·35°  |          | =<br>= | 5 <sup>5</sup> ∠5a–126·87<br>3125∠85·65°<br>237 + j3116     |
|          | e. | $(3 \angle -\pi/3)^2$    | =               | <sup>3</sup> 2∠2×−π/2 | 3                            |          | =      | $9 \angle -2\pi/3 \\ -4.5 - j7.79$                          |
|          | 1  |                          |                 |                       |                              |          |        |                                                             |

SAQ2-4-3

$$\tan x = \frac{\sin x}{\cos x}$$
$$= \frac{\frac{1}{2j} (e^{jx} - e^{-jx})}{\frac{1}{2} (e^{jx} + e^{-jx})}$$
$$\equiv \frac{(e^{jx} - e^{jx})}{j(e^{jx} + e^{-jx})}$$
$$\equiv \frac{i(e^{-jx} - e^{jx})}{(e^{jx} + e^{-jx})}$$
Since  $1/j = -j$ 
$$\equiv \frac{i(1 - e^{2jx})}{(1 + e^{2jx})}$$
multiplying top and bottom by  $e^{jx}$ 

| SAQ2-5-1 | a. Principal root = $25^{\frac{1}{2}} \angle -120^{\circ} \div 2 =$            | 5∠–6<br>2·5 – | 50°<br>j4·33                   |
|----------|--------------------------------------------------------------------------------|---------------|--------------------------------|
|          | Hence square roots are $2.5 - j4.33$ and $-2.5 + j4.33$                        | j4·33         |                                |
|          | b. $4 - j12 = 13 \angle -67 \cdot 38^{\circ}$                                  |               |                                |
|          | Principal square root is $13^{\frac{1}{2}} \angle -67 \cdot 38^{\circ} \div 2$ | =             | 3.606∠-33.69<br>3-j2           |
|          | Hence, square roots are $3 - j2$ and $-3 + j2$                                 |               |                                |
|          | c. $-24 - j70 = 74 \angle -108 \cdot 92^{\circ}$                               |               |                                |
|          | Principal square root is $74^{\frac{1}{2}} \angle -108.92^{\circ} \div 2$      | =             | 8·602∠-54·46°<br>5 - j7        |
|          | Hence, square roots are $5 - j7$ and $-5 + j7$                                 |               |                                |
|          | d. $6 + j8 = 10 \angle 53 \cdot 13^{\circ}$                                    |               |                                |
|          | Principal square root is $10^{\frac{1}{2}} \angle 53.13^{\circ} \div 2$        | =<br>=        | 3·162∠26·57°<br>2·828 + j1·414 |
|          | Hence, square roots are $2.828 + j1.414$ and -                                 | -2.828        | -j1·414                        |
|          | e. $-j9 = 9 \angle -90^{\circ}$                                                |               |                                |
|          | Principal square root is $9^{\frac{1}{2}} - 90^{\circ} \div 2$                 | =             | 3∠-45°<br>2·121 - j2·121       |
|          | Hence, square roots are $2 \cdot 121 - j2 \cdot 121$ and -                     | -2.121        | + j2·121                       |
|          |                                                                                |               |                                |
|          |                                                                                |               |                                |
|          |                                                                                |               |                                |

| SAQ2-5-2 | a. One cube root is         | $125^{1/3} \angle -150^{\circ} \div 3$                                                                                     |         |                                                          |
|----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------|
|          |                             | = 5∠-50°                                                                                                                   | =       | 3·21 – j3·83                                             |
|          | The other roots are and     | $5\angle (-50^{\circ} + 120^{\circ}) = 5\angle 70^{\circ}$<br>$5\angle (-50^{\circ} - 120^{\circ}) = 5\angle -170^{\circ}$ | =       | 1·71 + j4·70<br>-4·92 - j0·87                            |
|          | b. $-610 - j182 = 6$        | 536·57∠–163·39°                                                                                                            |         |                                                          |
|          | One cube root is            | $636.57^{1/3} \angle -163.39^{\circ} \div 3$                                                                               | =       | $=$ 8.602 $\angle$ -54.46°<br>5 - j7                     |
|          | The other roots are         | 8·602∠(-54·46° + 120°)                                                                                                     | =       | 8·602∠65·54°<br>3·56 + j7·83                             |
|          | and                         | 8·602∠(-54·46° - 120°)                                                                                                     |         | $= 8.602\angle -174.46^{\circ}$                          |
|          |                             |                                                                                                                            | =       | 8·56 – j0·83                                             |
| SAQ2-5-3 | $-1 = 1 \angle 180^{\circ}$ |                                                                                                                            |         |                                                          |
|          | One cube root is            | $1^{1/3} \angle 180^{\circ} \div 3 = 1 \angle 60^{\circ}$                                                                  | 0       | $= \frac{1}{2} + j$<br>= 0.5 + j0.866                    |
|          | The other cube roots a      | re $1 \angle (60^\circ + 120^\circ) = 1 \angle$                                                                            | 180°    | = -1                                                     |
|          | ar                          | and $1 \angle (60^{\circ} - 120^{\circ}) = 1 \angle 1$                                                                     | -60°    | $= \frac{1}{2} + j \frac{\sqrt{3}}{2}$<br>= 0.5 - j0.866 |
|          |                             | j<br>Anaginary<br>1/2                                                                                                      | ∑ + j(\ | /3)/2                                                    |
|          |                             | -1<br>-1<br>120°<br>120°<br>·5                                                                                             |         | 1 Real $\rightarrow$                                     |
|          |                             | _j                                                                                                                         | 2 – j(√ | 3)/2                                                     |
|          |                             |                                                                                                                            |         |                                                          |

|                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         | Sul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bstitutir                                                                                                                                                                                                                                                                                                                                                                                                                     | ng in the figures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| jωL                                                                 | =                                                                                                                                     | 5 + j62·83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 = 6                                                                                                                                                                                                                                                                                                                                                   | 3.03∠8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5·45°                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| jωC                                                                 | =                                                                                                                                     | (2 + j18·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(5) \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                    | = 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96 × 10                                                                                                                                                                                                                                                                                                                                                                                                                       | ) <sup>-6</sup> ∠83·94°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · jωL<br>· jωC                                                      | =                                                                                                                                     | $\frac{63 \cdot 03}{18 \cdot 96 \times 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{3\angle 85\cdot 45}{10^{-6}\angle 83}$                                                                                                                                                                                                                                                                                                           | ∘<br>· 94°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.324 \times 10^6 \angle 1.51^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                   | =                                                                                                                                     | $\sqrt{3}\cdot324$ ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 <sup>6</sup> ∠1·51                                                                                                                                                                                                                                                                                                                                   | l°÷2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.823 \times 10^3 \angle 0.755^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                                                                                                                                                                             | 1823 + j24 ohms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\gamma \sqrt{(R + 1)}$<br>Subs<br>R + 1<br>(R + 1)<br>(R + 1)<br>= | R + jω<br>stitutin<br>jωL<br>jω<br>jω<br>jωL)(0                                                                                       | $\frac{L}{G} + j\omega C$ g in the fig<br>$= 50 + i = j2 \cdot 0$ $G + j\omega C$ $90 \times 10^{-6} \angle c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vec{z}$ )<br>gures<br>+ j40·21<br>11 × 10 <sup>-7</sup><br>= j2<br>= (+<br>= 1<br>2128·8° ÷                                                                                                                                                                                                                                                           | $2 \cdot 011 \times -8 \cdot 08 + 2 \cdot 90 \times 12 = = =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 <sup>-7</sup> (50<br>j10·05)<br>10 <sup>-6</sup> ∠12<br>3·59<br>(1·5:                                                                                                                                                                                                                                                                                                                                                      | $0 + j40 \cdot 21)$<br>× $10^{-6}$<br>28 · 8°<br>× $10^{-3} \angle 64 \cdot 4^{\circ}$<br>5 + j3 · 24) × $10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     | $j\omega L$ $j\omega C$ $\cdot j\omega L$ $\cdot j\omega L$ $\cdot j\omega C$ $\gamma \sqrt{(I}$ Subs $R + 2$ $G + 2$ $(R + 1)$ $= 1$ | $j\omega L =$ $j\omega C =$ $\frac{j\omega L}{j\omega C} =$ $\gamma \sqrt{(R + j\omega C)}$ Substitutin $R + j\omega L$ $G + j\omega$ $(R + j\omega L)(0)$ $= \sqrt{12} + \frac{1}{2} + $ | $j\omega L = 5 + j62 \cdot 83$ $j\omega C = (2 + j18 \cdot 83)$ $\frac{j\omega L}{j\omega C} = \frac{63 \cdot 07}{18 \cdot 96 \times 10}$ $\gamma \sqrt{(R + j\omega L)(G + j\omega C)}$ Substituting in the fig<br>$R + j\omega L = 50 - 6$ $G + j\omega = j2 \cdot 0$ $(R + j\omega L)(G + j\omega C)$ $= \sqrt{12 \cdot 90} \times 10^{-6} \angle 3$ | $j\omega L = 5 + j62 \cdot 83 = 6$ $j\omega C = (2 + j18 \cdot 85) \times 10^{-6}$ $\cdot j\omega L = \frac{63 \cdot 03 \angle 85 \cdot 45}{18 \cdot 96 \times 10^{-6} \angle 83}$ $r_0 = \sqrt{3 \cdot 324} \times 10^6 \angle 1 \cdot 51$ $\overline{\gamma \sqrt{(R + j\omega L)(G + j\omega C)}}$ Substituting in the figures $R + j\omega L = 50 + j40 \cdot 21$ $G + j\omega = j2 \cdot 011 \times 10^{-7}$ $(R + j\omega L)(G + j\omega C) = j2$ $= (6)$ $= 1$ $= \sqrt{12 \cdot 90} \times 10^{-6} \angle 128 \cdot 8^{\circ} \div 3$ | sut<br>jωL = 5 + j62·83 = 63·03∠8<br>jωC = (2 + j18·85) × 10 <sup>-6</sup> = 18·<br>$\frac{1}{jωC}$ = $\frac{63 \cdot 03∠85 \cdot 45^{\circ}}{18 \cdot 96 × 10^{-6}∠83 \cdot 94^{\circ}}$<br>$\gamma \sqrt{(R + jωL)(G + jωC)}$<br>Substituting in the figures<br>R + jωL = 50 + j40·21<br>G + jω = j2·011 × 10 <sup>-7</sup><br>(R + jωL)(G + jωC) = j2·011 ×<br>= (-8·08 +<br>= 12·90 × 10 <sup>-6</sup> ∠128·8° ÷ 2 =<br>= | Substitutin<br>$j\omega L = 5 + j62.83 = 63.03 \angle 85.45^{\circ}$ $j\omega C = (2 + j18.85) \times 10^{-6} = 18.96 \times 10^{-6} \angle 18.94^{\circ}$ $= \sqrt{3.324 \times 10^{6} \angle 1.51^{\circ} \div 2} = =$ $=$ $\gamma \sqrt{(R + j\omega L)(G + j\omega C)}$ Substituting in the figures $R + j\omega L = 50 + j40.21$ $G + j\omega = j2.011 \times 10^{-7}$ $(R + j\omega L)(G + j\omega C) = j2.011 \times 10^{-7}(50)$ $= (-8.08 + j10.05)$ $= 12.90 \times 10^{-6} \angle 128.8^{\circ} \div 2 = 3.59$ $= (1.53)$ |

I

| SAQ2-6-1 | $(a+jb)^2+b^2$                                                                                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
|          | $= a^2 - b^2 + 2a\mathbf{j}b + b^2$                                                                                                          |
|          | $= a^2 + j2ab$                                                                                                                               |
|          | Hence, $a^2 + j2ab = 4 + j12$                                                                                                                |
|          | Equating parts: $a^2 = 4$<br>2ab = 12                                                                                                        |
|          | Since <i>a</i> is positive, $a = 2$ .<br>Substituting in the second equation gives $b = 3$ .                                                 |
|          |                                                                                                                                              |
| SAQ2-6-2 | $\frac{\mathbf{R}_x - \mathbf{j}/(\boldsymbol{\omega}\mathbf{C}_x)}{0.1 - \mathbf{j}/(\boldsymbol{\omega}3.5\times10^{-6})} = \frac{24}{50}$ |
|          | = 0.48                                                                                                                                       |
|          | : $R_x - j/(\omega C_x) = 0.48 \{ 0.1 - j/(\omega 3.5 \times 10^{-6}) \}$                                                                    |
|          | $= 0.048 - j0.48/(\omega 3.5 \times 10^{-6})$                                                                                                |
|          | Equating real parts: $R_x = 0.048$                                                                                                           |
|          | Equating imaginary parts; $1/(\omega C_x) = 0.48/(\omega 3.5 \times 10^{-6})$                                                                |
|          | giving $C_x = 3.5 \times 10^{-6} \div 0.48$                                                                                                  |
|          | $= 7.3 \times 10^{-6}$                                                                                                                       |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |

| SAQ2-7-1 | $2x^2 + 12x + 50 = 0$                                                                                 |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------|--|--|--|
|          | Applying the formula for solution of quadratic equations;                                             |  |  |  |
|          | $x = \frac{-12 \pm \sqrt{(12^2 - 4 \times 2 \times 50)}}{2 \times 2}$                                 |  |  |  |
|          | $= \frac{-12 \pm \sqrt{-256}}{4}$                                                                     |  |  |  |
|          | $= \frac{-12 \pm j16}{4} \qquad =  -3 \pm j4$                                                         |  |  |  |
|          | Hence, the roots are $-3 + j4$ and $-3 - j4$ .                                                        |  |  |  |
| SAQ2-7-2 | $3x^2 - 4x + 2 = 0$                                                                                   |  |  |  |
|          | $x = \frac{4 \pm \sqrt{\left[(-4)^2 - 4 \times 3 \times 2\right]}}{2 \times 3}$                       |  |  |  |
|          | $= \frac{4 \pm \sqrt{-8}}{6} \qquad = \frac{4 \pm 2\sqrt{-2}}{6}$                                     |  |  |  |
|          | $= \frac{2}{3} \pm j^{1}/_{3} \sqrt{2} = 0.67 \pm j0.47$                                              |  |  |  |
|          | Hence, the roots to 2 decimal places are $0.67 + j0.47$ and $0.67 - j0.47$                            |  |  |  |
| SAQ2-7-3 | a. $x^2 - 10x + 26 \equiv (x - \alpha)(x - \beta)$                                                    |  |  |  |
|          | where $\alpha$ , $\beta$ are the roots of $x^2 - 10x + 26 = 0$ .                                      |  |  |  |
|          | Hence, $\alpha$ , $\beta$ = $\underline{10 \pm \sqrt{[(-10)^2 - 4 \times 1 \times 26]}}_{2 \times 1}$ |  |  |  |
|          | $= \frac{10 \pm \sqrt{-4}}{2} \qquad = \frac{10 \pm j2}{2}$                                           |  |  |  |
|          | $= 5 \pm j$                                                                                           |  |  |  |
|          | Hence, $x^2 - 10x + 26 \equiv (x - 5 - j)(x - 5 + j)$                                                 |  |  |  |
|          |                                                                                                       |  |  |  |
|          |                                                                                                       |  |  |  |

| 1                                                                 |                           |                  |                                                                                           |       |  |
|-------------------------------------------------------------------|---------------------------|------------------|-------------------------------------------------------------------------------------------|-------|--|
| b.                                                                | $9x^2 - 12x + 13$         | ≡                | $9(x-\alpha)(x-\beta)$                                                                    |       |  |
| where $\alpha$ , $\beta$ are the roots of $9x^2 - 12x + 13 = 0$ . |                           |                  |                                                                                           |       |  |
|                                                                   | Hence, $\alpha$ , $\beta$ | =                | $\frac{12 \pm \sqrt{\left[\left(-12\right)^2 - 4 \times 9 \times 13\right]}}{2 \times 9}$ |       |  |
|                                                                   |                           | =                | $\frac{12 \pm \sqrt{-324}}{18}$                                                           |       |  |
|                                                                   |                           | =                | $\frac{12 \pm j18}{18} = \frac{2}{3}$                                                     | 3 ± j |  |
| Henc                                                              | e, $9x^2 - 12x + 13$      | =                | $9(x-^{2}/_{3}-j)(x-^{2}/_{3}+j)$                                                         |       |  |
|                                                                   |                           | =                | (3x-2-j3)(3x-2+j3)                                                                        |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
| c.                                                                | $2x^2 + 8 \equiv$         | 2(x - x)         | $-\alpha)(x-\beta)$                                                                       |       |  |
| where $\alpha$ , $\beta$ are the roots of $2x^2 + 8 = 0$ .        |                           |                  |                                                                                           |       |  |
|                                                                   | $2(x^2+4) = 0$            | $\therefore x^2$ | $+4 = 0$ $\therefore x^2 = -4$                                                            |       |  |
| The roots are $\pm j2$                                            |                           |                  |                                                                                           |       |  |
| Henc                                                              | $e 2x^2 + 8 \equiv$       | 2( <i>x</i> –    | $-j^{2}(x+j^{2})$                                                                         |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |
|                                                                   |                           |                  |                                                                                           |       |  |

| SAQ2-7-4 | $x^3 + 3x^2 + 9x - 13$                                                                                                                                                                                                        | $\equiv (x-1)(ax^2+bx+c)$  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|          | Dividing $x^3 + 3x^2 + 9x - 13$ by                                                                                                                                                                                            | y x - 1                    |
|          | $ \begin{array}{r} x^{2} + 4x + 13 \\ x-1 \overline{)x^{3} + 3x^{2} + 9x - 13} \\ \underline{x^{3} - x^{2}} \\ 4x^{2} + 9x - 13 \\ \underline{4x^{2} - 4x} \\ 13x - 13 \\ \underline{13x - 13} \\ \underline{0} \end{array} $ |                            |
|          | Hence, $x^3 + 3x^2 + 9x - 13 \equiv$                                                                                                                                                                                          | $(x-1)(x^2+4x+13)$         |
|          | =                                                                                                                                                                                                                             | $(x-1)(x-\alpha)(x-\beta)$ |
|          | Where $\alpha, \beta = \frac{-4 \pm \sqrt{4^2 - 4}}{2 \times 1}$                                                                                                                                                              | <u>×1×13)</u>              |
|          | $= \frac{-4 \pm \sqrt{-36}}{2}$                                                                                                                                                                                               | $= \frac{-4 \pm j6}{2}$    |
|          | $=$ $-2 \pm j3$                                                                                                                                                                                                               |                            |
|          | Hence, $x^3 + 3x^2 + 9x - 13 \equiv$                                                                                                                                                                                          | (x-1)(x+2-j3)(x+2+j3)      |
|          |                                                                                                                                                                                                                               |                            |
|          |                                                                                                                                                                                                                               |                            |
|          |                                                                                                                                                                                                                               |                            |
|          |                                                                                                                                                                                                                               |                            |
|          |                                                                                                                                                                                                                               |                            |
|          |                                                                                                                                                                                                                               |                            |