

THE ROYAL SCHOOL OF SIGNALS

TRAINING PAMPHLET NO: $\mathbf{3 6 0}$

DISTANCE LEARNING PACKAGE CISM COURSE 2001
 MODULE 1 - ALGEBRA

Prepared by:

Technology Wing
CISM Group
Issue date: May 2001

数紋安 Training \＆ ARMy Recruiting

This publication is for training purposes only. It is not for general external use. It is not subject to amendment and must not be quoted as an authority.

Authority: \qquad (Name in blocks)

Signature: \qquad

Date: \qquad

Review Date	Review Date	Review Date
Signature	Signature	Signature

Authority: \qquad (Name in blocks)

Signature: \qquad

Date: \qquad

Review Date	Review Date	Review Date
Signature	Signature	Signature

Authority: ____ (Name in blocks)		
Signature:		
Date: \quad Review Date	Review Date	Review Date
Signature	Signature	Signature

CONTENTS

Page
Contents i
Chapter 1 - Revision 1-1
Chapter 2 - Indices and Logarithms 2-1
Chapter 3 - Quadratics 3-1
Chapter 4 - Algebraic Division 4-1
Chapter 5 - Simultaneous Equations 5-1
Chapter 6 - Solutions to SAQs 6-1

Chapter 1
Revision

Revision

Introduction
The subject of algebra covers a very large range of different topics. The algebra we shall deal with in this course is that which has direct application to electrotechnology, and concerns the science of operations with numbers. Other types of algebra such as Boolean algebra are not covered. In this section we shall be considering operations with real numbers and complex numbers.

Basic concepts
Real and complex numbers are subject to the two basic algebraic operations of addition and multiplication represented by the operators + and \times although for $a \times b$ we often write $a . b$ or simply $a b$. The basic laws are those with which we are familiar, i.e. the rules of simple arithmetic.
a. Commutative laws: $a+b=b+a$ and $a b=b a$
b. Associative laws: $\quad(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$

These statements may appear trivial since they are the rules of arithmetic that we all know, however, as we shall discover later, these rules do not necessarily apply to other structures such as vectors and matrices.
c. Distributive law: $a(b+c)=a b+a c$
i.e. multiplication distributes over addition. This is one of the axioms of numbers and may be verified by example, eg

$$
\begin{aligned}
& 2 \times(3+4) \\
& \text { or } \quad 2 \times 7=14 \\
& 2 \times(3+4)=2 \times 3+2 \times 4=6+8=14
\end{aligned}
$$

Real numbers
The first numbers which were conceived were the natural numbers or positive integers, i.e. $1,2,3,4, \ldots$ the numbers used for counting. Eventually, in order to deal with practical problems, other numbers were introduced, such as zero, fractions and negative numbers.

A rational number is a fraction which can be expressed as the ratio of 2 integers, for example, $1 / 2,3 / 4,-1 / 4$. The integers may also be regarded as rational numbers since an integer n may be considered to be $n / 1$.

Graphical
representation
The real numbers may be represented by points on a line either side of zero. This is sometimes called the Real line.

The number 0 (zero) has the unique properties:

$$
a+0=a, \quad a \times 0=0
$$

The number 1 (unity) has the unique property: $\quad a \times 1=a$

Subtraction

Rotation

Division

Irrational numbers

Subtraction is equivalent to moving in the negative direction, thus we may regard the operation of subtraction as being a special case of addition, i.e. the adding of a negative number: $a-b=a+(-b)$. Therefore we can see that the distributive law applies to subtraction in the same way as addition:

$$
a(b-c)=a b-a c
$$

Multiplication by -1 represents a rotation of 180°.
Hence,

$$
a \times(-1)=-a, \quad-a \times(-1)=a
$$

Therefore $\quad a \times(-b)=-a b, \quad(-a) \times(-b)=a b$
Every real number except zero, has an inverse. The inverse of the real number a is a number a^{-1} such that $a \times a^{-1}=1$. We may regard the operation of division as being a special case of multiplication, i.e. multiplication by the inverse of a number: $a \div b=a \times b^{-1}$. Thus the inverse of a real number a may also be written as $1 \div a$ or $1 / a$.

It follows that the distributive law applies to division in the same way as multiplication, eg
$(a+b) \div c=(a+b) \times 1 / c=a / c+b / c$
As zero has no inverse, division by zero is not possible with real (or complex) numbers.

There are many real numbers which cannot be expressed as the ratio of two integers and are therefore called irrational. For example; $\sqrt{ } 2, \sqrt{ } 3, \pi$, e . Nevertheless they can be placed on the real line along with the rational numbers and can be evaluated as decimals to as many places as desired.

\[

\]

Infinity

The real numbers form a continuum from $-\infty$ to $+\infty$. The symbol ∞ denotes "infinity". It is important to understand that infinity cannot be regarded as a number since it does not obey the rules of algebra. In the algebra of real numbers, the statement $x=\infty$ has no meaning. We say that $x \rightarrow \infty$ which means that x approaches a very large value which is not measurable. We can also say:

As $x \rightarrow \infty, 1 / x \rightarrow 0$ i.e. as x becomes infinitely large, $1 / x$ approaches zero, however, the expression $1 \div \infty$ has no meaning.

As $x \rightarrow 0,1 / x \rightarrow \infty$, i.e. as x approaches zero, $1 / x$ becomes infinitely large, however, the expression $1 \div 0$ has no meaning since division by zero is undefined.

The above two statements are examples of limits which will be discussed later in the course.

An equation consists of two expressions separated by the equality sign $=$ The solution of algebraic equations is very simple if you remember that all you are doing is arithmetic with real numbers. Therefore, the only operations you need to perform as the operations of addition, subtraction, multiplication, and division. Sometimes other operations such as taking square roots may be required.

The statement [expression 1] $=$ [expression 2] simply means that the 2 expressions have exactly the same numerical value, i.e. they are the same real number. Therefore any arithmetic operation performed on one side must be performed on the other side in order that the equality remain true.

Example Find the value of x which satisfies the equation:

$$
2 x+3=11
$$

This equation simply states that the number $(2 x+3)$ is equal to the real number 11 . If we subtract 3 from each number we obtain

$$
2 x=8
$$

If we now divide each number by 2 we obtain $x=4$, which is the only solution or root of this equation.

In solving equations you should avoid such vague rules as "take 3 to the other side and change its sign". There is no such operation in algebra. What is being performed is subtraction. If this point is appreciated, the student will have no difficulty in manipulating the most complicated expressions.

Identities

SAQ1-1-1

An equation in a variable x is satisfied by specific values of x only. For example, the above equation is satisfied by one single value of x, namely $x=4$. The equation $x^{2}=9$ is satisfied by 2 real numbers only, $x=3$ and $x=-3$. The equation $\sin x=1$ is satisfied by an infinite set of numbers; $x=\pi / 2 \pm 2 n \pi$, where n is an integer.

An identity is satisfied by all real numbers. To distinguish an identity from an equation we use the symbol \equiv which means identically equal to.

Examples

$$
(x+1)^{2} \equiv x^{2}+2 x+1
$$

This statement is true for every real value of x (also for every complex value). This may be checked by substituting any value you please in both sides and it will always be equal.
$\sin ^{2} x+\cos ^{2} x=1$ is an identity as it is true for all values of x. Again, this may be verified by substituting any number for x. Therefore it is more informative to write it as:

$$
\sin ^{2} x+\cos ^{2} x \equiv 1
$$

If x is a real number, for what values of x are the following statements true?
a. $\quad 3(2 x+5)+2=6 x+17$
b. $\frac{x-1}{2}+\frac{4 x+1}{5}=x$
c. $x^{2}+4=0$

Application of distributive law
eg $\quad(a+b)(c+d)$
$=(a+b) c+(a+b) d$ applying the distributive law and treating $(a+b)$ as a

As a general rule of thumb, multiply everything in one bracket by everything in the other bracket.

EXAMPLE

Simplify $(2 x-3 y)(4 x+7 y)-x y+x^{2}=3 y^{2}$

$$
\begin{aligned}
& (2 x-3 y)(4 x+7 y)-x y+x^{2}=3 y^{2} \\
& =8 x^{2}+14 x y-12 x y-21 y^{2}-x y+x^{2}-3 y^{2} \\
& =9 x^{2}+x y-24 y^{2}
\end{aligned}
$$

Factorisation
The distributive law is used to remove brackets.

$$
\begin{array}{ll}
=(a+b) c+(a+b) d & \begin{array}{l}
\text { applying the distributive law and treating }(a \\
\text { single number. }
\end{array} \\
=a c+b c+a d+b d & \text { applying the distributive law to each bracket. }
\end{array}
$$

To factorise expressions we apply the distributive law in reverse. For example

$$
2 a^{2} b+4 a
$$

By inspection we see that both terms have a common factor of $2 a$.

$$
\therefore 2 a^{2} b+4 a=2 a(a b+2)
$$

More complicated expressions may be factorised by grouping together terms which have common factors, for example

$$
\begin{aligned}
& 15 a c-6 a \mathrm{~d}+20 b c-8 b \mathrm{~d} \\
& =3 a(5 c-2 \mathrm{~d})+4 b(5 c-2 \mathrm{~d}) \\
& =(5 c-2 \mathrm{~d})(3 a+4 b)
\end{aligned}
$$

The same result could have been obtained by grouping the pairs differently, eg

$$
\begin{aligned}
& 15 a c-6 a \mathrm{~d}+20 b \mathrm{c}-8 b \mathrm{~d} \\
& =5 \mathrm{c}(3 a+4 b)-2 \mathrm{~d}(3 a+4 b) \\
& =(3 a+4 b)(5 \mathrm{c}-2 \mathrm{~d})
\end{aligned}
$$

SAQ1-1-4
Solve the following equations for x.
a. $(2 x+3)-4(x-5)=6$
b. $\frac{x}{3}+\frac{2 x}{5}=\frac{22}{3}$
c. $\quad 3 x+1 / 4 x-3 / 4 x+5 x=11 / 2$

Chapter 2

Indices and Logarithms

However, if n is an even number, $a^{1 / n}$ only exists as a real number for a ≥ 0, since even roots of negative numbers are "imaginary". We shall deal with imaginary numbers in Section 2: Complex numbers.

If m, n are integers, positive or negative, then $a^{m / n}=\left(a^{m}\right)^{1 / n}=\left(a^{1 / n}\right)^{m}$
Hence $a^{m / n}=\sqrt[n]{ }\left(a^{m}\right)=(\sqrt[n]{ } a)^{m}$
However, if ${ }^{m / n}$ is a fraction in its smallest form, and n is even, then $a^{m / n}$ can only be real for $\mathrm{a} \geq 0$, since even roots of negative numbers are not real.

Examples

$$
\begin{aligned}
8^{2 / 3} & =\sqrt[3]{ } 8^{2}=\sqrt[3]{64}=4 \\
\text { or } \quad 8^{2 / 3} & =(\sqrt[3]{ } 8)^{2}=2^{2}=4
\end{aligned}
$$

2. $625^{-3 / 4}=1 / 625^{3 / 4}=1 /(\sqrt[4]{615})^{3}=1 / 5^{3}=1 / 125=0 \cdot 008$
3. Express in its simplest form with positive indices

$$
\begin{aligned}
& 1 / 2(3 x-2)^{3 / 4}-{ }^{3 / 2}(3 x-2)^{-1 / 4} \\
= & \frac{(3 x-2)^{3 / 4}}{2}-\frac{3}{2(3 x-2)^{1 / 4}} \\
= & \frac{(3 x-2)^{3 / 4}(3 x-2)^{1 / 4}-3}{2(3 x-2)^{1 / 4}} \\
= & \frac{(3 x-2)-3}{2(3 x-2)^{1 / 4}}=\frac{3 x-5}{2(3 x-2)^{1 / 4}}
\end{aligned}
$$

4. Simplify $\sqrt{\frac{b^{-3}\left(b^{2}\right)^{1 / 2}}{b^{-8}}}$
$\left(\frac{b^{-3} b}{b^{-8}}\right)^{1 / 2}=\left(\frac{b^{-2}}{b^{-8}}\right)^{1 / 2}=\left(b^{6}\right)^{1 / 2}=b^{3}$

Irrational indices

SAQ1-2-1

SAQ1-2-2
SAQ1-2-3

An irrational number cannot be expressed in the form m / n, therefore a^{p} where p is irrational cannot be defined as above. We shall leave this definition until after the next sub-section on logarithms.

Simplify, expressing the answer with positive indices.
a.

$$
\frac{1}{\sqrt{\left(z^{3} \times z^{-5} \div z^{10}\right)}}
$$

b. $\quad(x+2)^{1 / 2}-4(x+2)^{-1 / 2}+5(x+2)^{-3 / 2}$

Evaluate $6561^{-3 / 8}$, expressing the answer as a rational fraction.
If $a^{1 / 2}+a^{-1 / 2}=(2 x+2)^{1 / 2}$, show that $x=1 / 2(a+1 / a)$.

This page has been left blank for the working of SAQs.

Graph of log function

Rules of logarithms

Examples

It can be seen that as $x \rightarrow 0, y \rightarrow-\infty$ and that negative numbers have no logarithm. Since 10 is a positive constant, there is no real power to which it can be raised to give a negative result. Similarly, since e is a positive constant there is no real power to which it can be raised to give a negative result.

As the \log of a number is an index of a given base, the rules are the rules of indices.

$$
\begin{aligned}
\log _{\mathrm{b}}(x y) & =\log _{\mathrm{b}} x+\log _{\mathrm{b}} y \\
\log _{\mathrm{b}}(x \div y) & =\log _{\mathrm{b}} x-\log _{\mathrm{b}} y \\
\log \left(x^{\mathrm{n}}\right) & =n \log _{\mathrm{b}} x
\end{aligned}
$$

1. Given that $\lg 2=0.30103, \lg 3=0.47712$, using this information only find
a. $\quad \lg 6$
b. $\quad \lg 9$
c. $\quad \lg 1 \cdot 5$
a. $\quad \lg 6=\lg (3 \times 2)=\lg 3+\lg 2=0.30103+0.47712=0.77815$
b. $\quad \lg 9=\lg 3^{2}=2 \lg 3=2 \times 0.47712=0.95424$
c. $\quad \lg 1 \cdot 5=\lg (3 / 2)=\lg 3-\lg 2=0.47712-0.30103=0.17609$

From the above rules it may be seen that $\log _{b}(1 / x)=-\log _{b} x$
By the division rule; $\log _{b}(1 / x)=\log _{b} 1-\log _{b} x=0-\log _{b} x=-\log _{b} x$
By the power rule; $\log _{b}(1 / x)=\log _{b} x^{-1}=-\log _{b} x$

Example	2. Given $\lg 2=0 \cdot 30103$, find $\lg 5$. $\begin{aligned} & \lg 1 / 2=-\lg 2=-0 \cdot 30103 \\ & \lg 5=\lg (10 \times 1 / 2) \end{aligned}=\lg 10+\lg 1 / 2 .$
Change of base	$\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
	ProofLet $\log _{a} x=\mathrm{N}$ then $x=a^{\mathrm{N}}$ Taking logs to base $b, \log _{b} x=\mathrm{N} \log _{b} \mathrm{a}$
	Hence, $\quad \mathrm{N}=\frac{\log _{b} x}{\log _{b} a}$
	$\therefore \quad \log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
	This rule may be used to find logs to base 2 using a calculator. eg
Example	$\log _{2} 42=\frac{\lg 42}{\lg 2}=\frac{1 \cdot 62325}{0 \cdot 30103}=5 \cdot 3923$
	Alternatively, $\quad \log _{2} 42=\frac{\ln 42}{\ln 2}=\frac{3 \cdot 73767}{0.69315}=5 \cdot 3923$
Change of base for powers	It is often useful to express a power of one base in terms of a different base, usually as a power of e .
	From the above rules, $\ln a^{x}=x \ln a \quad($ for $a>0)$
	Taking antilogs to base e (raising e to the power of both sides)
	$a^{x}=\mathrm{e}^{x \ln a}$
Irrational index	An irrational power may now be defined, i.e. $a^{x}=\mathrm{e}^{x \ln a}$ for irrational x. This definition only holds for $a>0$, since $\ln a$ does not exist for $a \leq 0$.

1. Express 10^{3} as a power of e.

$$
10^{3}=\mathrm{e}^{3 \ln (10)}=\mathrm{e}^{3 \times 2 \cdot 3026}=\mathrm{e}^{6 \cdot 9078}
$$

2. Express $\left(6 e^{-2}\right)^{1.5}$ as a single exponent of e.
$\left(6 \mathrm{e}^{-2}\right)^{1 \cdot 5}=6^{1.5} \mathrm{e}^{-3}=\mathrm{e}^{1 \cdot 5 \ln 6} \mathrm{e}^{-3}=\mathrm{e}^{2 \cdot 688} \mathrm{e}^{-3}=\mathrm{e}^{2 \cdot 688-3}=\mathrm{e}^{-0.312}$
3. Solve for x
a. $\quad 3^{2 x-6}=9$
b. $\quad 7^{2-x}=2^{x+3}$
c. $\quad 3 \log _{2}(3 x+1)-\log _{2}(x-3)^{3}=12$
a. $\quad 9$ is an exact power of 3, i.e. $3^{2 x-6}=3^{2}$

Taking logs to base $3 ; 2 x-6=2$, Hence $x=4$
b. 7 and 2 cannot be expressed exactly in the same base, so taking logs to any base;
$(2-x) \log 7=(x+3) \log 2$
$2 \log 7-x \log 7=\quad x \log 2+3 \log 2$
$2 \log 7-3 \log 2=\quad x(\log 2+\log 7)$
$\log 7^{2}-\log 2^{3}=x(\log (2 \times 7))$

$$
x=\frac{\log 49-\log 8}{\log 14}
$$

Evaluating using common logs, $x=0.687$
c. This may be rewritten as $3 \log _{2}(2 x+1)-3 \log _{2}(x-3)=12$

Divided by 3;

$$
\log _{2}(2 x+1)-\log _{2}(x-3)=4
$$

This may be rewritten as

$$
\log _{2}\left(\frac{2 x+1}{x-3}\right)=4
$$

$$
\text { Hence, } \quad \frac{2 x+1}{x-3}=2^{4}
$$

$$
\therefore \quad 2 x+1=16 x-48
$$

$$
49 \quad=14 x \quad \therefore \quad x=31 / 2
$$

Example	4. Rearrange the following formula in terms of i. $\begin{aligned} & t=\frac{\mathrm{L}}{\mathrm{R}} \ln \left(\frac{\mathrm{E}}{\mathrm{E}-\mathrm{iR}}\right) \\ & \text { Rearranging } \quad \frac{\mathrm{Rt}}{\mathrm{~L}}=\ln \left(\frac{\mathrm{E}}{\mathrm{E}-\mathrm{iR}}\right) \\ & \therefore \quad \mathrm{e}^{\mathrm{Rt} / \mathrm{L}}=\frac{\mathrm{E}}{\mathrm{E}-\mathrm{i} \mathrm{R}} \\ & \mathrm{E}-i \mathrm{R}=\mathrm{E} \div \mathrm{e}^{\mathrm{Rt} / \mathrm{L}}=\mathrm{E} \mathrm{e}^{-\mathrm{R} t / \mathrm{L}} \\ & \mathrm{E}\left(1-\mathrm{e}^{-\mathrm{R} t / \mathrm{L}}\right)=i \mathrm{R} \\ & i=\frac{\mathrm{E}}{\mathrm{R}}\left(1-\mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}\right) \end{aligned}$
SAQ1-2-4	Prove the rules of logarithms, i.e. a. $\quad \log _{b}(x y)=\log _{b} x+\log _{b} y$ b. $\quad \log _{b}(x \div y)=\log _{b} x-\log _{b} y$ c. $\quad \log \left(x^{\mathrm{n}}\right)=n \log _{b} x$

SAQ1-2-5 Given $\lg 5=0.69897, \lg 7=0.84510$, using this information only, find
(a) $\lg 2$
(b) $\lg 14$
(c) $\lg 3 \cdot 5$
(d) $\lg 1.96$
(e) $\lg 8.75$, expressing the answers to 4 places of decimals.

SAQ1-2-6 Using the change of base rule for logarithms:
a. Evaluate $\log _{2} 50$ to 4 decimal places.
b. Prove $\quad \log _{a} b=1 /\left(\log _{b} a\right)$, where a, b are any 2 numbers.

Solve for x without using log tables or calculator.
a. $\quad \log _{10} x=\log _{10} 3+\log _{10} 4-\log _{10} 6$
b. $\quad 2^{x+1} \cdot 3^{x-1}-2^{x} \cdot 3^{x-2}=120$

SAQ1-2-8
The voltage v on a transmission line at a distance $x \mathrm{~km}$ from the source is given by $v=\mathrm{V}_{\mathrm{A}} \mathrm{e}^{-a x}$ where V_{A} is the transmission voltage and α is the attenuation constant. If $\mathrm{V}_{\mathrm{A}}=10$ volts, $\alpha=0.04$, find the distance from the source at which the voltage is 3.68 volts.

Chapter 3
Quadratics

Quadratics \mid A quadratic is a second degree polynomial. It is of the form $a x^{2}+b x+c$, where a, b, c, are constants.

Perfect Squares
NOTE $(x+a)(x-a) \equiv x^{2}-a^{2}$
(Difference between 2 squares)

$$
\begin{aligned}
& (x+a)^{2} \equiv x^{2}+2 a x+a^{2} \\
& (x-a)^{2} \equiv x^{2}-2 a x+a^{2}
\end{aligned}
$$

Perfect square

Perfect square

In the expressions for perfect squares, the coefficient of x is $\pm 2 a$ and the constant term is a^{2}. These are clearly related.

It can be seen that if a quadratic is a perfect square, then the constant term is the square of half the coefficient of x. eg

$$
\begin{aligned}
(x+3)^{2} \equiv & x^{2}+6 x+9 \\
& (1 / 2 \times 6)^{2}=9 \\
(x-5)^{2} \equiv & x^{2}-10 x+25 \\
& (1 / 2 \times-10)^{2}=25
\end{aligned}
$$

Completing the square

Examples
The above is used in completing the square, i.e. expressing a quadratic as the sum of a perfect square plus a constant. This process is often used when finding inverse Laplace transforms of second order expressions, applied to circuit analysis.

If the coefficient of x^{2} is other than unity, take it out as a factor
2. $2 x^{2}+8 x-3 \equiv 2\left\{x^{2}+4 x-\frac{3}{2}\right\}$
$\equiv 2\left\{x^{2}+4 x+4-4-3 / 2\right\}$
$\equiv 2\left\{(x+2)^{2}-{ }^{11} / 2\right\}$
$\equiv \quad 2(x+2)^{2}-11 \quad$ (multiply back by 2)
3. $3 x^{2}-6 x+10 \equiv 3\left\{x^{2}-2 x+{ }^{10} / 3\right\}$

$$
\begin{aligned}
& \equiv 3\left\{x^{2}-2 x+1\right. \\
& \equiv 3\left\{(x-1)^{2}\right. \\
& \equiv 3 / 7 / 3\} \\
& \equiv 3(x-1)^{2}+7
\end{aligned}
$$

SAQ1-3-1
Express the following quadratics in the form $\mathrm{A}(x+\mathrm{B})^{2}+\mathrm{C}$
a. $\quad x^{2}+14 x+50$
b. $\quad x^{2}-6 x+14$
c. $\quad 3 x^{2}+15 x-4$
d. $2+6 x-2 x^{2}$
e. $-5 x^{2}-10 x-20$

Quadratic graphs

Quadratic equations

Gnephof $y=a r+b x+c$ for $a 00$

Gmph of $y=a x+b x+c$ for $a=11$

The graph of a quadratic function has a parabolic shape.

A quadratic equation is an equation of the form $a x^{2}+b x+c=0$.
Dividing through by a and completing the square:

$$
\begin{array}{ll}
a\left\{x^{2}+b / a x+c / a\right\} & =0 \\
x^{2}+b / a x+c / a & =0 \\
(x+b / 2 a)^{2}-\left({ }^{b} / 2 a\right)^{2}+c / a & =0 \\
(x+b / 2 a)^{2} & =b^{2} / 4 a^{2}-c / a \\
& =\frac{b^{2}-4 a c}{4 a^{2}}
\end{array}
$$

Square rooting both sides:

$$
(x+b / 2 a) \quad=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

We must put \pm since every number has 2 square roots, one being the negative of the other.

$$
\text { Hence, } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This formula may be used to solve any quadratic equation.
A quadratic equation has 2 solutions for x which are known as roots.

Discriminant

Unequal roots

Equal roots

Complex

The quantity $b^{2}-4 a c$ is called the discriminant.

If $b^{2}-4 a c>0$ then the quadratic equation has 2 real roots which are unequal. In this case, the graph of $a x^{2}+b x+c$ crosses the x axis, i.e. $\mathrm{y}=0$, in 2 points.

Example: The equation $x^{2}-2 x-3=0$ has the roots:

Graph of $y=x-2 x-3=(x+1)(x-3)$ $y=0$ at the two points $x=-1, x=3$

$$
\begin{aligned}
\mathrm{x} & =\frac{2 \pm \sqrt{\left\{(-2)^{2}+12\right\}}}{2} \\
& =\frac{2 \pm \sqrt{16}}{2} \\
& =3,-1
\end{aligned}
$$

This can also be deduced from the factors
$(x-3)(x+1)=0$, giving

$$
x-3=0 \quad \text { or } \quad x+1=0 .
$$

If $b^{2}-4 a c=0$ then we get the solution $x=-b / 2 a$. This is called a repeated root, i.e. the 2 roots are equal. In this case, the graph of $a x^{2}+b x+c$ touches the x axis at one point only. Example:

The equation $x^{2}-4 x+4=0$ has the roots:

$x=\frac{4 \pm \sqrt{0}}{2}=2$
Strictly speaking there are 2 roots which coincide.
i.e. $(x-2)(x-2)=0$ gives the roots $x=2, x=2$.

The nature of the roots of quadratic equations is important when we come to solve the second order differential equations which arise from the analysis of linear circuits.

If $b^{2}-4 a c<0$ then it has no real square root. In this case, the roots are complex.
roots \quad The graph of $a x^{2}+b x+c$ does not touch or cross the x axis at any point.
The complex roots of quadratic
 equations are also important in circuit theory and in the theory of filters.

We shall consider these further in Section 2: Complex numbers.

Gmph of $y=x-4 x+5$
There is no real value of x for which $y=0$

Factors of quadratics

Example

Example

Any quadratic expression may be resolved into 2 linear factors, i.e.

$$
a x^{2}+b x+c \equiv a(x-\alpha)(x-\beta)
$$

Note the minus signs, so that putting x equal to α or β makes the expression zero.

Since α and β make $a x^{2}+b x+c$ equal to zero, they must be the roots of the quadratic equation $a x^{2}+b x+c=0$

$$
2 x^{2}-5 x-3 \equiv(x-3)(2 x+1) \equiv 2(x-3)(x+1 / 2)
$$

Obviously, $x=3$ and $x=-1 / 2$ are the roots of the equation $2 x^{2}-5 x-3=0$

When the factors involve simple numbers such as integers, the expression often may be factorised by inspection. In practical engineering problems the numbers are usually awkward decimals. The factors of a quadratic may be simply found by equating it to zero and solving the quadratic equation.

Factorise

$$
63 x^{2}-103 x-26
$$

	$\begin{aligned} 63 x^{2}-103 x-26 & \equiv 63(x-\alpha)(x-\beta) \text { where } \alpha, \beta \text { are the roots of } \\ 63 x^{2}-103 x-26 & =0 \\ \therefore \alpha, \beta & =\frac{103 \pm \sqrt{ } 17161}{126} \\ & =\frac{13}{7}, \frac{-2}{9} \\ \therefore \quad 63 x^{2}-103 x-26 & \equiv 63\left(x-{ }^{13} / 7\right)\left(x+{ }^{2} / 9\right) \\ & \equiv(7 x-13)(9 x+2) \end{aligned}$ In this example the factors are rational but in most practical cases this will not be so.
Irrational factors	Factorise $x^{2}-4 x-14$ $x^{2}-4 x-14 \equiv(x-\alpha)(x-\beta)$, where α, β are the roots of $\begin{aligned} & x^{2}-4 x-14=0 \quad \therefore \alpha, \beta \quad=\frac{4 \pm \sqrt{ } 72}{2}=\frac{4 \pm \sqrt{ }(36 \times 2)}{2} \\ & =\frac{4 \pm 6 \sqrt{ } 2}{2} \quad=2 \pm 3 \sqrt{ } 2 \end{aligned}$
	Note that the irrational roots are conjugate surds. $\begin{aligned} \therefore x^{2}-4 x-14 & \equiv(\mathrm{x}-2-3 \sqrt{ } 2)(x-2+3 \sqrt{ } 2) \\ & =(x-6 \cdot 24)(x+2 \cdot 24) \text { to } 2 \text { decimal places. } \end{aligned}$ In most practical problems, a solution is obtained to a specified degree of accuracy.
Example	Factorise $\quad 6 \cdot 3 x^{2}+1 \cdot 5 x-3 \cdot 2$ $6 \cdot 3 x^{2}+1 \cdot 5 x-3 \cdot 2 \equiv 6 \cdot 3(x-\alpha)(x-\beta)$, where α, β are the roots of $6 \cdot 3 x^{2}+1 \cdot 5 x-3 \cdot 2=0$ $\therefore \alpha, \beta=\frac{-1 \cdot 5 \pm \sqrt{82} \cdot 89}{12 \cdot 6}=0.604,-0.842$
SAQ1-3-2	$6 \cdot 3 x^{2}+1 \cdot 5 x-3 \cdot 2=6 \cdot 3(x-0 \cdot 604)(x+0 \cdot 842)$ to 3 decimal places. Find the factors of $2 x^{2}+20 x+26$, expressing the answer in

(a) surd form \quad (b) in decimal form to 3 decimal places.

SAQ1-3-3 Find the factors of $3 x^{2}-2 \cdot 75 x-1 \cdot 2$, expressing the answer to 2 places of decimals.

Chapter 4
Algebraic division

Algebraic division

Polynomials

Addition and multiplication

Examples

Polynomial division

A polynomial in x is a function of x of the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{n} x^{n}
$$

Where n is a non-negative integer and $a_{0}, a_{1}, a_{3}, \ldots$. are constants, some of which may be zero.
If a_{n} is not zero then n is the degree of the polynomial, i.e. the highest power present. For example $5+2 x-3 x^{2}+7 x^{3}$ is a polynomial of degree 3 (cubic polynomial).
As a special case, a constant a_{0} may be regarded as a polynomial of degree zero, since $a_{0}=a_{0} x^{0}$.
Polynomials have applications to the theory of Error Detection and Correction in digital transmissions.

The sum, difference, or product of two polynomials is clearly another polynomial. If P_{m} is a polynomial of degree m and P_{n} is a polynomial of degree n then $\mathrm{P}_{m} \times \mathrm{P}_{n}$ if a polynomial of degree $m+n$. If $m>n$ then $\mathrm{P}_{m} \pm \mathrm{P}_{n}$ is a polynomial of degree m.
$\left(x^{3}+x^{2}-4 x+2\right)\left(3 x^{2}-2 x+1\right) \equiv 3 x^{5}+x^{4}-13 x^{3}+15 x^{2}-8 x+2$
$\left(x^{3}+x^{2}-4 x+2\right)+\left(3 x^{2}-2 x+1\right) \equiv x^{3}+4 x^{2}-6 x+3$
However, when one polynomial is divided by another, the result is only a polynomial if it divides exactly with no remainder, i.e. if the smaller polynomial is a factor of the larger one.
$\frac{2 x^{3}+7 x^{2}+5 x-2}{2 x^{2}+3 x-1}=x+2 \quad$ (divides exactly)
$\frac{4 x^{3}+x^{2}-4 x+2}{x^{2}-2 x+1}=4 x+9+\frac{10 x-7}{x^{2}-2 x+1}$
We obtain a quotient of $4 x+9$ with a remainder of $10 x-7$.
These results may be obtained by a process of algebraic long division which consists of continually removing multiples of the divisor until either there is no remainder or the remainder is of lower degree than the divisor. To illustrate this process, let us remind ourselves of how we used to perform numerical long division before we had calculators.
$2359 \div 15$
The number we are dividing by is called the divisor $=15$
The number we are dividing is called the dividend $=2359$
Dividing the dividend by the divisor gives a result called the quotient and a remainder which will be zero if the division is exact.

Applying the process of long division:
$\begin{aligned} \begin{aligned} \frac{157}{2359} & \\ \frac{15}{85} & \begin{array}{l}\text { Multiply the divisor by 1, giving 15, put this underneath. } \\ \text { Subtract, giving 8. Bring down 5. 15 divides into } 85 \text { at most } 5 . \\ \frac{75}{109}\end{array}\end{aligned} \begin{array}{l}\text { Multiply divisor by 5, giving 75. } \\ \frac{105}{4}\end{array} & \begin{array}{l}\text { Subtract, giving 10. Bring down the 9. } 15 \text { goes in at most } 7 . \\ \text { Multiply divisor by 7, giving 105. } \\ \text { Subtract, giving 4 which is less than the divisor. }\end{array}\end{aligned}$
15 will not divide into 4 and so the process is finished. We have a quotient of 157 with a remainder of 4 .

$$
\text { Hence } 2359 \div 15=157^{4} / 15
$$

This familiar process can be applied in exactly the same way to polynomial division. Taking the above two examples:

Examples of
polynomial division
a. $\frac{2 x^{3}+7 x^{2}+5 x-2}{2 x^{2}+3 x-1}$
$\left.2 x^{2}+3 x-1\right) \frac{x+2}{2 x^{3}+7 x^{2}+5 x-2} \quad 2 x^{2}$ divides into $2 x^{3}, x$ times. Put x in quotient.
$\frac{2 x^{3}+3 x^{2}-x}{} \quad$ Multiply divisor by x then subtract.
$2 x^{2}$ divides into $4 x^{2}, 2$ times. Put 2 in quotient.
$\underline{4 x^{2}+6 x-2} \quad$ Multiply divisor by 2 then subtract.
Remainder is zero, so divides exactly.
The remainder is zero, therefore $\frac{2 x^{3}+7 x^{2}+5 x-2}{2 x^{2}+3 x-1}=x+2$
b. $\frac{4 x^{3}+x^{2}-4 x+2}{x^{2}-2 x+1}$
$\left.x^{2}-2 x+1\right) \frac{4 x+9}{4 x^{3}+x^{2}-4 x+2} \quad x^{2}$ divides into $4 x^{3}, 4 x$ times. Put $4 x$ in quotient. $4 x^{3}-8 x^{2}+4 x \quad$ Multiply divisor by $4 x$ then subtract.
$9 x^{2}-8 x+2 x^{2}$ divides into $9 x^{2}, 9$ times. Put 9 in quotient.
$\frac{9 x^{2}-18 x+9}{10 x-7} \quad \begin{aligned} & \text { Multiply divisor by } 9 \text { then subtract. } \\ & \text { Remainder is of lower degree than divisor. }\end{aligned}$
We are left with a remainder which is not divisible by $x^{2}-2 x+1$.
Hence, quotient $=4 x+9$, remainder $=10 x-7$.
i.e.. $\frac{4 x^{3}+x^{2}-4 x+2}{x^{2}-2 x+1}=4 x+9+\frac{10 x-7}{x^{2}-2 x+1}$

If P_{m} is a polynomial of degree m and P_{n} is a polynomial of degree n, where $m \geq n$, then $\mathrm{P}_{m} \div \mathrm{P}_{n}$ consists of a quotient of degree $m-n$ with a remainder whose degree is less than n. the remainder may be zero.

SAQ1-4-1 Perform the following long divisions:
a. $\left(4 x^{4}-4 x^{3}+7 x^{2}-3 x-4\right) \div(2 x+1)$
b. $\quad\left(3 x^{4}+2 x^{3}-2 x^{2}-x+6\right) \div\left(3 x^{2}-x+2\right)$
c. $\left(2 x^{3}+5 x-4\right) \div\left(x^{3}+x^{2}-1\right)$
d. $\frac{x^{3}+3 x^{2}+4 x-2}{(x+1)(x-3)}$
e. $\left(6 x^{3}+11 x^{2}-x+11\right) \div(3 x+7)$

This page has been left blank for the working of SAQs.

Chapter 5

Simultaneous Equations

Equations with more than one unknown

Methods of solution

Method 1

Back-
substitution

In chapter 1 we looked at the solution of equations with one unknown. An equation such as $2 \boldsymbol{x}-\mathbf{3 y}=\mathbf{6}$ has two unknown quantities, x and y. It is not possible to solve this equation uniquely for x or y. In order to solve it, we need some additional information. Simultaneous equations are a set of equations in more than one unknown, which may be solved to give values for all the unknowns.

This type of equation arises from problems in electrical networks which have more than one branch. Later, on the course at the Royal School of Signals, we shall solve this type of equation using matrix methods on a computer. Some pocket calculators have the facility for solving simultaneous equations but before you use this it is advisable to have some idea of how they are solved by hand.

Consider the equation in line 2 above:

$$
2 x-3 y=6
$$

If we also had the information $x+y=2$, then we can solve for both unknowns. This is a set of simultaneous equations.
We have :

$$
\begin{array}{lll}
2 x-3 y & =6 \\
x+y & =2
\end{array}
$$

From equation (2) $\quad x=2-y$
Substituting this into equation (1) :

$$
2(2-y)-3 y=6
$$

Solving this for $y: \quad 4-2 y-3 y=6$

$$
\begin{aligned}
-5 y & =2 \\
y & =-0 \cdot 4
\end{aligned}
$$

Substituting the value of y back into equation (2)

$$
\begin{aligned}
x & =2-(-0 \cdot 4) \\
& =2 \cdot 4
\end{aligned}
$$

The solutions are $x=2.4, y=-0.4$

We could, of course, have substituted for y first, i.e. $y=2-x$ and then evaluated x.

Linear independence

Example

Method 2

To solve equations with two unknowns we require two equations.
To solve equations with three unknowns we require three equations.
To solve equations with \boldsymbol{n} unknowns we require \boldsymbol{n} equations.
Not only must we have \boldsymbol{n} equations, these equations must be linearly independent. This means that any equation cannot simply be a linear combination of one or more of the other equations.

Consider the equations

$$
\begin{array}{ll}
2 x+5 y & =4 \\
6 x+15 y & =12 \tag{2}
\end{array}
$$

Equation (2) is simply equation (1) multiplied by 3 . It contains no new information. Therefore it is not possible to solve for x and y uniquely.

Consider the equations in 3 unknowns :

$$
\begin{aligned}
x+3 y-4 z & =2 \\
2 x-y+5 z & =1 \\
4 x+5 y-3 z & =5
\end{aligned}
$$

These equations are not linearly independent. Any one of these equations may be constructed from a linear combination of the other two, for example, equation (3) may be derived as equation (2) $+2 \times$ equation (1).
Therefore it is not possible to solve for x, y, z, uniquely.
The coefficients of x, y, z, may be regarded as the vectors
$(1,3,-4),(2,-1,5)$, and $(4,5,-3)$. If these are not independent then the solution cannot be found.

By the method of back-substitution, solve the following equations for x and y.

$$
\begin{aligned}
& 2 x+4 y=5 \\
& 3 x-5 y=2
\end{aligned}
$$

A network gives rise to the following equations:

$$
\begin{aligned}
& 1.5 I_{1}-1.2 I_{2}=1.8 \\
& 2.8 I_{1}-8.4 I_{2}=-5.88
\end{aligned}
$$

With the aid of a calculator, using back-substitution, solve for I_{1} and I_{2}.

In this method, one of the variables is firstly eliminated by performing a series of

Elimination	linear operations between the equations. Any equation or a multiple of it may be added to or subtracted from any other equation.
Example	
	Consider the equations that we solved above.
	$\begin{array}{lll} 2 x-3 y & =6 & \text { (1) } \\ x+y & =2 & \text { (2) } \end{array}$
	Multiply equation (2) by 2 giving equation (3)
	(2) $\times 2: \quad 2 x+2 y=4$
	$2 x-3 y=6$ (1)
	Subtract equation (1) from equation (3)
	(3)-(1) : $5 y=-2$
	$\therefore y=-0.4$

We can now either back-substitute to find x or use elimination again. In this example, back-substitution is the simpler method, however to illustrate the point, now multiply equation (2) by 3 giving equation (4).
(2) $\times 3$:

$$
\begin{array}{ll}
2 x-3 y & =6 \tag{1}\\
3 x+3 y & =6
\end{array}
$$

(4)

Now add equations (1) and (4).

$$
\begin{aligned}
& \text { (1)+(4) : } \\
& 5 x=12 \\
& \therefore x=2 \cdot 4
\end{aligned}
$$

Example
Solve for x and y.

$$
\begin{array}{ll}
3 x+2 y & =25 \\
2 x-5 y & =4
\end{array}
$$

Multiply equation (1) by 2 and equation (2) by 3
(1) $\times 2$:
$6 x+4 y=50$
(3)
(2) $\times 3$:
$6 x-15 y=12$
(4)

Subtract equation (4) from equation (3).
(3)-(4): $19 y=38$

$$
\therefore y=2
$$

Back-substituting into equation (1)

$$
\begin{aligned}
3 x+4 & =25 \\
3 x & =21 \\
x & =7
\end{aligned}
$$

SAQ 1-5-3

SAQ 1-5-4
Solve by elimination with the aid of a calculator

$$
\begin{aligned}
& 2 \cdot 5 I_{1}+1 \cdot 2 I_{2}=7 \cdot 56 \\
& 3 \cdot 2 I_{1}-0 \cdot 7 I_{2}=6 \cdot 77
\end{aligned}
$$

three unknowns

Example
equations in two variables. These are then solved as described above. The third variable can then be obtained by back-substitution.

Solve for x, y, z.

$$
\begin{align*}
2 x+3 y-5 z & =28 \\
3 x-2 y+6 z & =-4 \\
x+4 y+3 z & =21 \tag{3}
\end{align*}
$$

Firstly choose which variable you wish to eliminate. This will depend upon which choice results in the simplest arithmetic. Suppose we choose x.

Multiply equation (3) by 2 .
$\begin{array}{lrlll}\text { (3) } \times 2: & 2 x+8 y+6 z & =42 & \text { (4) } \\ \text { Subtract equation (1) } & 2 x+3 y-5 z & =28 & \text { (1) } \\ \text { (4)-(1): } & 5 y+11 z & =14 & \text { (5) }\end{array}$

$$
\begin{equation*}
5 y+11 z=14 \tag{5}
\end{equation*}
$$

We now eliminate the same variable between any other pair of equations.
Multiply equation (3) by 3 .

(3) $\times 3$:	$3 x+12 y+9 z$	$=63$
Subtract equation (2)	$3 x-2 y+6 z$	$=-4$
(6)-(2) :	$14 y+3 z$	$=67$

We now have the pair of equations in y and z :

$$
\begin{array}{cc}
5 y+11 z & =14 \\
14 y+3 z & =67 \tag{7}
\end{array}
$$

Multiply equation (5) by 3 and equation (7) by 11

$$
\begin{array}{lrl}
(5) \times 3: & 15 y+33 z & =42 \tag{8}\\
(7) \times 11: & 154 y+33 z & =737
\end{array}
$$

Subtract equation (8)from equation (9)
(9-8): $139 y=695$

$$
\therefore y=5
$$

Back-substituting in (5) gives $25+11 z=14$ $\therefore z=-1$

Back-substituting in (3) for both y and z gives

$$
\begin{aligned}
x+20-3 & =21 \\
\therefore x & =4
\end{aligned}
$$

Solutions are $x=4, \quad y=5, \quad z=-1$.

$$
\begin{array}{ll}
x+y-z & =6 \\
3 x+2 y+4 z & =1 \\
x-y+2 z & =-6
\end{array}
$$

SAQ 1-5-6 In a network the currents in three branches are related by the following equations :

$$
\begin{aligned}
3 I_{1}+2 I_{2}+6 I_{3} & =27 \cdot 5 \\
3 I_{1}+4\left(I_{2}-I_{3}\right) & =2 \cdot 5 \\
6\left(I_{3}-I_{1}\right)+4 I_{2} & =19
\end{aligned}
$$

Rearrange these equations into a suitable form and solve them to find values for I_{1}, I_{2}, I_{3}.

Higher order equations

To solve four equations in four unknowns we progressively reduce it to three unknowns and then to two unknowns as before. This is obviously very laborious, and computer methods were developed many years ago to solve very large sets of simultaneous equations which arise commonly in engineering, initially using analogue computers and subsequently digital computers. It should also be appreciated that in real life problems, the numbers are not all nice round integers.

On your course at the Royal School of Signals, you will learn computer techniques for solving equations of this type.

Chapter 6

Solutions to SAQs

SAQ1-1-1 solution

SAQ1-1-2
solution
a. Applying the distributive law to the left hand side,
$3(2 x+5)+2=6 x+15+2=6 x+17$. This is identically equal to the right hand side of the statement, therefore the statement is true for all values of x. i.e. it is an identity.
b. Multiplying both sides by 10

$$
\begin{aligned}
& 5(x-1)+2(4 x+1)=10 x \\
& 5 x-5+8 x+2=10 x \quad \text { (applying distributive law) } \\
& 13 x-3=10 x \quad \text { (adding like terms) } \\
& 3 x=3 \quad \text { (subtract } 10 x \text { and add 3) } \\
& x=1 \quad \text { (divide by 3) }
\end{aligned}
$$

The statement is true for $x=1$ only.
c. Subtracting 4 from both sides

$$
x^{2}=-4
$$

There is no real number x for which this statement is true, since $x^{2} \geq 0$ for all real x.
a. $\quad 3(x+2 y)-5(2 x-y)+12 x-2 y$
$=3 x+6 y-10 x+5 y+12 x-2 y$
$=5 x+9 y$
b. $\quad(a+2 b)(c-3 d)-a d+b(4 c-2 d)$
$=a c+2 b c-3 a d-6 b d-a d+4 b c-2 b d$
$=a c+6 b c-4 a d-8 b d$
c. $(2 x+3)(5 x-1)-x^{2}-3 x+1$
$=10 x^{2}+15 x-2 x-3-x^{2}-3 x+1$
$=9 x^{2}+10 x-2$

Solutions to SAQs

SAQ1-1-3 solution

SAQ1-1-4 solution
a. $\quad 3 a b+9 b c=3 b(a+3 c)$
b. $a b c-a^{2} b+b^{2} c-a b^{2}$
$=b\left(a c-a^{2}+b c-a b\right)$
$=b(a(c-a)+b(c-a))$
$=b(a+b)(c-a)$
c. $\frac{3 a b}{4}-\frac{15 a^{2}}{8}$
$=\frac{3 a}{4}\left(b-\frac{5 a}{2}\right)$
$=\frac{3 a}{8}(2 b-5 a)$
a. $\quad 2(x+3)-4(x-5)=6$

$$
\begin{aligned}
2 x+6-4 x+20 & =6 \\
-2 x+26 & =6 \\
20 & =2 x \\
x & =10
\end{aligned}
$$

b. $\frac{x}{3}+\frac{2 x}{5}=\frac{22}{x}$

Multiplying both sides by the lowest common denominator, 15

$$
\begin{array}{ll}
5 x+6 x & =110 \\
11 x & =110 \\
x & =10
\end{array}
$$

Solutions to SAQs

SAQ1-1-4 solution

SAQ1-2-1
solution

SAQ1-2-2
solution

SAQ1-2-3
solution
c. $3 x+1 / 4 x-3 / 4 x+5 x=11 / 2$

$$
71 / 2 x=11 / 2
$$

$$
\frac{15 x}{2}=\frac{3}{2}
$$

$$
15 x=3
$$

$$
x \quad=1 / 5
$$

a. $\frac{1}{\sqrt{\left(z^{3} \times z^{-5} \div \mathrm{z}^{10}\right)}}=\frac{1}{\left(\mathrm{z}^{-12}\right)^{1 / 2}}=\frac{1}{\mathrm{z}^{-6}}=\mathrm{z}^{6}$
b. $\quad(x+2)^{1 / 2}-4(x+2)^{-1 / 2}+5(x+2)^{-3 / 2}$
$=\sqrt{x+2}-\frac{4}{\sqrt{x+2}}+\frac{5}{(\sqrt{x+2})^{3}}$
$=\frac{\{\sqrt{ }(x+2)\}^{4}-4\{\sqrt{ }(x+2)\}^{2}}{\{\sqrt{ }(x+2)\}^{3}}+5$
$=\frac{(x+2)^{2}-4(x+2)+5}{(\sqrt{x+2})^{3}}=\frac{x^{2}+1}{(x+2)^{3 / 2}}$
$6561^{-3 / 8}=1 /(\sqrt[8]{6561})^{3}=1 / 3^{3}=1 / 27$

$$
a^{1 / 2}+a^{-1 / 2}=(2 x+2)^{1 / 2}
$$

Squaring both sides, $\quad a+a^{-1}+2=2 x+2$

$$
\begin{aligned}
& a+a^{-1} & =2 x \\
\therefore & x & =1 / 2(a+1 / a)
\end{aligned}
$$

SAQ1-2-4 solution
a. Let $\quad u=\log _{b} x, \quad v=\log _{b} y$

Then $\quad x=b^{\mathrm{u}}, \quad y=b^{\mathrm{v}}$

$$
\therefore x y=b^{u} b^{v}
$$

$$
=b^{u+v}
$$

Hence, $\log _{\mathrm{b}}(x y)=u+v$

$$
=\log _{b} x+\log _{b} y
$$

b. From above, also $x \div y=b^{\mathrm{u}} \div b^{\mathrm{v}}$

$$
=b^{u-v}
$$

Hence, $\log _{b}(x \div y)=u-v$

$$
=\log _{b} x-\log _{b} y
$$

c. From above, $u=\log _{b} x \quad \therefore x=b^{u}$

$$
\begin{aligned}
\therefore x^{\mathrm{n}} & =\left(b^{\mathrm{u}}\right)^{\mathrm{n}} \\
& =b^{\mathrm{nu}}
\end{aligned}
$$

Hence, $\log _{\mathrm{b}}\left(x^{\mathrm{n}}\right) \quad=n u$

$$
=n \log _{b} x
$$

Solutions to SAQs

SAQ1-2-5 solution

SAQ1-2-6 solution

SAQ1-2-7 solution
a. $\quad \lg 2=\lg (10 \div 5)=\lg 10-\lg 5=1-0.69897 \quad=0.30103$
b. $\quad \lg 14=\lg (7 \times 2)=\lg 7+\lg 2 \quad=0.84510+0.30103=1.14613$
c. $\lg 3 \cdot 5=\lg (7 \div 2)=\lg 7-\lg 2=0.84510-0.30103=0.54407$
d. $\quad \lg 1 \cdot 96=\lg \left(14^{2} \div 100\right)=2 \lg 14-\lg 100=2 \times 1 \cdot 14613-2=0.29226$
e. $\quad \lg 8 \cdot 75=\lg (7 \times 5 \div 4)=\lg 7+\lg 5-2 \lg 2=0 \cdot 84510+0 \cdot 69897-0.60206$

$$
=0.94201
$$

a. $\quad \log _{2} 50=\frac{\log _{10} 50}{\log _{10} 2}=5.6439$
b. $\quad \log _{a} b=\frac{\log _{b} b}{\log _{b} a}=1 /\left(\log _{b} a\right)$
a. $\quad \log _{10} x=\log _{10} 3+\log _{10} 4-\log _{10} 6$

$$
=\log _{10}(3 \times 4 \div 6)=\log _{10} 2
$$

$\therefore x=2$
b. $2^{x+1} \cdot 3^{x-1}-2^{x} \cdot 3^{x-2} \quad=120$

$$
2^{x} \cdot 2 \cdot 3^{x} \cdot 3^{-1}-3^{x} \cdot 3^{x} \cdot 3^{-2}=120
$$

$$
2 / 3(2 \times 3)^{x}-1 / 9(2 \times 3)^{x}=120
$$

$$
6.6^{x}-6^{x}=1080
$$

$$
5.6^{x}=1080
$$

$$
6^{x} \quad=216 \quad \therefore x=3
$$

SAQ1-2-8 solution

SAQ1-2-9
solution

SAQ1-2-10 solution

$$
v=\mathrm{V}_{\mathrm{A}} \mathrm{e}^{-\alpha x}
$$

Substituting in values; $3.68=10 \mathrm{e}^{-0.04 x}$

$$
\mathrm{e}^{-0.04 x}=0 \cdot 368
$$

Taking logs to base $e ;-0.04 x=\ln 0.368$

$$
\begin{aligned}
& x=(\ln 0.368) \div(-0.04) \\
& x=25 \mathrm{~km}
\end{aligned}
$$

$$
v=\mathrm{E}\left(1-\mathrm{e}^{-t / \mathrm{CR}}\right)
$$

$$
v / \mathrm{E}=1-\mathrm{e}^{-t / \mathrm{CR}}
$$

$$
\mathrm{e}^{-t / \mathrm{CR}}=1-v / \mathrm{E} \quad=\quad \frac{E-v}{E}
$$

Inverting; $\quad \mathrm{e}^{t / \mathrm{CR}}=\frac{E}{E-v}$
Taking logs; $\quad t / \mathrm{CR}=\ln \left(\frac{E}{E-v}\right)$

$$
t \quad=\mathrm{CR} \ln \left(\frac{E}{E-v}\right)
$$

$$
\begin{aligned}
3 \times 10^{-2} & =\mathrm{e}^{\ln 3} \mathrm{e}^{-2 \ln 10} \\
& =\mathrm{e}^{\ln 3-2 \ln 10} \\
& =\mathrm{e}^{-3 \cdot 5066}
\end{aligned}
$$

SAQ1-3-1 solution
a. $\quad x^{2}+14 x+50 \equiv x^{2}+14 x+49-49+50$

$$
\equiv(x+7)^{2}+1
$$

b. $x^{2}-6 x+14 \equiv x^{2}-6 x+9-9+14$

$$
\equiv(x-3)^{2}+5
$$

c. $3 x^{2}+15 x-4 \equiv 3\left\{x^{2}+5 x-4 / 3\right\}$

$$
\equiv 3\left\{x^{2}+5 x+25 / 4-25 / 4-4 / 3\right\}
$$

$$
\equiv 3\left\{(x+5 / 2)^{2}-91 / 12\right\}
$$

$$
\equiv 3(x+5 / 2)^{2}-91 / 4
$$

d. $2+6 x-2 x^{2}$

$$
\equiv-2\left\{x^{2}-3 x-1\right\}
$$

$$
\equiv-2\left\{x^{2}-3 x+9 / 4-{ }^{9} / 4-1\right\}
$$

$$
\equiv-2\left\{(x-3 / 2)^{2}-13 / 4\right\}
$$

$$
\equiv-2(x-3 / 2)^{2}+{ }^{13} / 2
$$

e. $-5 x^{2}-10 x-20 \equiv-5\left\{x^{2}+2 x+4\right\}$

$$
\begin{aligned}
& \equiv-5\left\{x^{2}+2 x+4\right\} \\
& \equiv-5\left\{(x+1)^{2}+3\right\} \\
& \equiv-5(x+1)^{2}-15
\end{aligned}
$$

SAQ1-3-2 solution

SAQ1-3-3 solution
$2 x^{2}+20 x+26 \quad \equiv \quad 2(x-\alpha)(x-\beta)$
where α, β are the roots of $2 x^{2}+20 x+26=0$
$\begin{aligned} \therefore \alpha, \beta & =\frac{-20 \pm \sqrt{ }(400-208)}{4}=\frac{-20 \pm \sqrt{ } 192}{4} \\ & =\frac{-20 \pm \sqrt{ }(64 \times 3)}{4}=\frac{-20 \pm 8 \sqrt{3}}{4}=-5 \pm 2 \sqrt{ } 3\end{aligned}$
$\therefore 2 x^{2}+20 x+26 \equiv 2(x+5-2 \sqrt{ } 3)(x+5+2 \sqrt{ } 3)$
$\equiv \quad 2(x+1 \cdot 536)(x+8 \cdot 464)$
$3 x^{2}-2 \cdot 75 x-1.2 \equiv 3(x-\alpha)(x-\beta)$
where α, β are the roots of $3 x^{2}-2 \cdot 75 x-1 \cdot 2=0$
$\therefore \alpha, \beta=\frac{2 \cdot 75 \pm \sqrt{ }(7.5625+14 \cdot 4)}{6}=\frac{2 \cdot 75 \pm 4 \cdot 686}{6}$
$=1 \cdot 25,-0 \cdot 32$
$\therefore 3 x^{2}-2.75 x-1 \cdot 2 \equiv 3(x-1.25)(x+0.32)$ to two decimal places.

SAQ1-4-1 solution
a.

$$
\begin{gathered}
\frac{2 x^{3}-3 x^{2}+5 x-4}{4 x+1)} \begin{array}{c}
4 x^{4}-4 x^{3}+7 x^{2}-3 x-4 \\
\frac{4 x^{4}+2 x^{3}}{-6 x^{3}}+7 x^{2}-3 x-4 \\
\frac{-6 x^{3}-3 x^{2}}{10 x^{2}}-3 x-4 \\
\frac{10 x^{2}+5 x}{-8 x-4} \\
\underline{-8 x-4} \\
\underline{0}
\end{array} \\
\therefore\left(4 x^{4}-4 x^{3}+7 x^{2}-3 x-4\right) \div(2 x+1) \equiv 2 x^{3}-3 x^{2}+5 x-4
\end{gathered}
$$

b.

$$
\begin{array}{r}
3 x^{2}-x+2 \frac{x^{2}+x-1}{3 x^{4}+2 x^{3}-2 x^{2}-x+6} \\
\frac{3 x^{4}-x^{3}+2 x^{2}}{3 x^{3}-4 x^{2}-x+6} \\
\frac{3 x^{3}-x^{2}+2 x}{-3 x^{2}-3 x+6} \\
-\underline{3 x^{2}+x-2} \\
\underline{-4 x+8}
\end{array}
$$

Quotient is $x^{2}+x-1$ with a remainder of $-4 x+8$.
$\therefore\left(3 x^{4}+2 x^{3}-2 x^{2}-x+6\right) \div\left(3 x^{2}-x+2\right)$
$\equiv x^{2}+x-1-\frac{4 x-8}{3 x^{2}-x+2}$

SAQ1-4-1 solution
c.

$$
\begin{aligned}
& x^{3}+x^{2}-1 \frac{2}{2 x^{3}+5 x-4} \\
& \frac{2 x^{3}+2 x^{2}-2}{-2 x^{2}+5 x-2}
\end{aligned}
$$

The Quotient is 2 with a remainder of $-2 x^{2}+5 x-2$

$$
\therefore\left(2 x^{3}+5 x-4\right) \div\left(x^{3}+x^{2}-1\right) \equiv 2+\frac{-2 x^{2}+5 x-2}{x^{3}+x^{2}-1}
$$

$$
\equiv 2-\frac{2 x^{2}-5 x+2}{x^{3}+x^{2}-1}
$$

d.

$$
\begin{gathered}
x^{2}-2 x-3 \frac{x+5}{) x^{3}+3 x^{2}+4 x-2} \\
\frac{x^{3}-2 x^{2}-3 x}{5 x^{2}+7 x-2} \\
\frac{5 x^{2}-10 x-15}{\underline{17 x+13}}
\end{gathered}
$$

The Quotient is $x+5$ with a remainder of $17 x+13$

$$
\therefore \frac{x^{3}+3 x^{2}+4 x-2}{(x+1)(x-3)} \equiv x+5+\frac{17 x+13}{(x+1)(x-3)}
$$

Solutions to SAQs

SAQ1-4-1 solution

$$
\begin{array}{r}
3 x+7 \frac{2 x^{2}-x+2}{6 x^{3}+11 x^{2}-x+11} \\
\frac{6 x^{3}+14 x^{2}}{-3 x^{2}-x+11} \\
-\frac{3 x^{2}-7}{6 x}+11 \\
\underline{6 x+14} \\
\underline{\underline{-3}}
\end{array}
$$

The Quotient is $2 x^{2}-x+2$ with a remainder of -3 .
Hence, $\left(6 x^{3}+11 x^{2}-x+11\right) \div(3 x+7) \equiv 2 x^{2}-x+2-\frac{3}{3 x+7}$

SAQ 1-5-1 solution

SAQ 1-5-2 solution

$$
\begin{array}{lll}
2 x+4 y & =5 & \text { (1) } \\
3 x-5 y & =2
\end{array}
$$

From equation (1), $x=\frac{5-4 y}{2} \quad$ (3)
Substituting in equation (2)

$$
3\left(\frac{5-4 y}{2}\right)-5 y=2
$$

Multiply both sides by 2

$$
\begin{aligned}
& 3(5-4 y)-10 y=4 \\
& 15-12 y-10 y=4 \\
& 11=22 y \\
& y=1 / 2=0 \cdot 5
\end{aligned}
$$

Substitute for y in (3)

$$
\begin{aligned}
x & =\frac{5-4 \times 1 / 2}{2} \\
& =\frac{3}{2}=1.5
\end{aligned}
$$

Solutions : $x=1 \cdot 5, y=0 \cdot 5$.
$1.5 I_{1}-1.2 I_{2}=1.8$ (1)
$2 \cdot 8 I_{1}-8 \cdot 4 I_{2}=-5 \cdot 88$ (2)

From equation (1) $\quad I_{1}=\frac{1 \cdot 2 I_{1}+1 \cdot 8}{1 \cdot 5}$
Substituting in equation (2) : $\quad 2 \cdot 8\left(\frac{1 \cdot 2 I_{2}+1 \cdot 8}{1 \cdot 5}\right)-8 \cdot 4 I_{2}=-5 \cdot 88$
Multiply by $1 \cdot 5: 2 \cdot 8\left(1 \cdot 2 I_{2}+1 \cdot 8\right)-12 \cdot 6 I_{2}=-1 \cdot 68$

$$
\begin{aligned}
3 \cdot 36 I_{2}+5 \cdot 04-12 \cdot 6 I_{2} & =-8 \cdot 82 \\
9 \cdot 24 I & =13 \cdot 86
\end{aligned}
$$

$$
I_{2}=1 \cdot 5
$$

Substitute in (3) :

$$
\begin{aligned}
I_{1} & =\frac{1 \cdot 2 \times 1 \cdot 5+1 \cdot 8}{1 \cdot 5} \\
& =2.4
\end{aligned}
$$

Solutions: $I_{1}=2 \cdot 4, \quad I_{2}=1 \cdot 5$.

Solutions to SAQs

SAQ 1-5-3 solution

SAQ 1-5-4
solution

$$
\begin{array}{rr}
5 x+3 y & =81 \\
4 x-2 y & =34 \tag{2}
\end{array}
$$

Multiply equation (1) by 2 and equation (2) by 3 .
(1) $\times 2$
$10 x+6 y=162$
(2) $\times 3$: $12 x-6 y=102$
(4)

Add equations (3) and (4)
(3) + (4) :

$$
\begin{aligned}
22 x & =264 \\
\therefore x & =12
\end{aligned}
$$

Back-substitute in equation (2)

$$
\begin{array}{cl}
48-2 y & =34 \\
2 y & =14 \\
\therefore y & =7
\end{array}
$$

Solutions : $x=12, y=7$.

$$
\begin{align*}
& 2 \cdot 5 I_{1}+1 \cdot 2 I_{2}=7.56 \tag{1}\\
& 3 \cdot 2 I_{1}-0.7 I_{2}=6.77 \tag{2}
\end{align*}
$$

Multiply equation (1) by 0.7 and equation (2) by 1.2 .

$$
\begin{aligned}
& \text { (1) } \times 0.7: \quad \begin{array}{l}
1.75 I_{1}+0.84 I_{2} \\
\text { (2) } \times 1.2:
\end{array} \quad=5.292 \\
& 3.84 I_{1}-0.84 I_{2} \\
& =8.124
\end{aligned}
$$

Add equations (3) and (4)
(3) + (4) :

$$
5 \cdot 59 I_{1}=13 \cdot 416
$$

$$
\therefore I_{1}=2 \cdot 4
$$

Back-substitute in equation (1) :

$$
\begin{aligned}
2.5 \times 2 \cdot 4+1 \cdot 2 I_{2} & =7.56 \\
1 \cdot 2 I_{2} & =1.56 \\
\therefore I_{2} & =1.3
\end{aligned}
$$

Solutions: $\quad I_{1}=2 \cdot 4, \quad I_{2}=1 \cdot 3$.

SAQ 1-5-5 solution

$$
\begin{align*}
x+y-z & =6 \\
3 x+2 y+4 z & =1 \\
x-y+2 z & =-6 \tag{3}
\end{align*}
$$

(1)+(3): $2 x+z=0$ (4)
(3) $\times 2: \quad 2 x-2 y+4 z=-12$ (5)

$$
3 x+2 y+4 z=1
$$

$$
5 x+8 z=-11
$$

$$
16 x+8 z=0
$$

$$
11 x=11
$$

$$
\therefore x \quad=1
$$

Back-substituting into equation (4) : $2+z=0$

$$
\therefore z=-2
$$

Back-substituting into equation (1) : $1+y+2=6$

$$
\therefore y \quad=3
$$

Solutions : $x=1, \quad y=3, \quad z=-2$.

SAQ 1-5-6 solution

$$
\begin{aligned}
3 I_{1}+2 I_{2}+6 I_{3} & =27 \cdot 5 \\
3 I_{1}+4\left(I_{2}-I_{3}\right) & =2 \cdot 5 \\
6\left(I_{3}-I_{1}\right)+4 I_{2} & =19
\end{aligned}
$$

Rearranging

$$
\begin{aligned}
3 I_{1}+2 I_{2}+6 I_{3} & =27 \cdot 5 \\
3 I_{1}+4 I_{2}-4 I_{3} & =2 \cdot 5 \\
-6 I_{1}+4 I_{2}+6 I_{3} & =19
\end{aligned}
$$

(1)-(2) :

$$
\begin{equation*}
-2 I_{2}+10 I_{3}=25 \tag{4}
\end{equation*}
$$

(2) $\times 2$:

$$
\begin{align*}
6 I_{1}+8 I_{2}-8 I_{3} & =5 \tag{5}\\
-6 I_{1}+4 I_{2}+6 I_{3} & =19 \tag{3}
\end{align*}
$$

(5) + (3) :

$$
12 I_{2}-2 I_{3}=24
$$

© $\times 5$:

$$
\begin{aligned}
60 I_{2}-10 I_{3} & =120 \\
-2 I_{2}+10 I_{3} & =25 \\
& =145 \\
58 I_{2} & =15 I_{2}
\end{aligned}
$$

$$
\text { © } 7
$$

(4)
(7)+(4) :

Back-substituting in (4): $-5+10 I_{3}=25$

$$
\therefore I_{3}=3
$$

Back-substituting in (2): $\quad 3 I_{1}+10-12=2 \cdot 5$

$$
\therefore I_{1} \quad=1.5
$$

Solutions: $I_{1}=1 \cdot 5, \quad I_{2}=2 \cdot 5, \quad I_{3}=3$.

