

THE ROYAL SCHOOL OF SIGNALS

TRAINING PAMPHLET NO: 360

DISTANCE LEARNING PACKAGE *CISM COURSE 2001* MODULE 1 – ALGEBRA

Prepared by:

Technology Wing CISM Group

Issue date: May 2001

DP Bureau

This publication is for training purposes only. It is not for general external use. It is not subject to amendment and must not be quoted as an authority.

Authority:		(Name in blocks)
Signature:		
Date:		
Review Date	Review Date	Review Date
Signature	Signature	Signature
Authority: (Name in blocks)		
Signature:		
Date:		
Review Date	Review Date	Review Date
Signature	Signature	Signature
Authority: (Name in blocks)		
Signature:		
Date:		
Review Date	Review Date	Review Date
Signature	Signature	Signature

<u>CONTENTS</u>

	Page
Contents	i
Chapter 1 – Revision	1–1
Chapter 2 – Indices and Logarithms	2-1
Chapter 3 – Quadratics	3–1
Chapter 4 – Algebraic Division	4–1
Chapter 5 – Simultaneous Equations	5-1
Chapter 6 – Solutions to SAQs	6-1

Chapter 1 Revision

Revision Introduction	The subject of algebra covers a very large range of different topics. The algebra we shall deal with in this course is that which has direct application to electrotechnology, and concerns the science of operations with numbers. Other types of algebra such as Boolean algebra are not covered. In this section we shall be considering operations with <i>real</i> numbers and <i>complex</i> numbers.	
Basic concepts	Real and complex numbers are subject to the two basic algebraic operations of addition and multiplication represented by the operators $+$ and \times although for $a \times b$ we often write <i>a</i> . <i>b</i> or simply <i>ab</i> . The basic laws are those with which we are familiar, i.e. the rules of simple arithmetic.	
	a. Commutative laws: $a + b = b + a$ and $ab = ba$	
	b. Associative laws: $(a + b) + c = a + (b + c)$ and $(ab)c = a(bc)$	
	These statements may appear trivial since they are the rules of arithmetic that we all know, however, as we shall discover later, these rules do not necessarily apply to other structures such as vectors and matrices.	
	c. Distributive law: $a(b+c) = ab + ac$	
	i.e. multiplication distributes over addition. This is one of the axioms of numbers and may be verified by example, eg	
	$2 \times (3+4) = 2 \times 7 = 14$	
	or $2 \times (3+4) = 2 \times 3 + 2 \times 4 = 6 + 8 = 14$	
Real numbers	The first numbers which were conceived were the <i>natural numbers</i> or <i>positive integers</i> , i.e. 1, 2, 3, 4, the numbers used for counting. Eventually, in order to deal with practical problems, other numbers were introduced, such as zero, fractions and negative numbers.	
	A <i>rational</i> number is a fraction which can be expressed as the <i>ratio</i> of 2 integers, for example, $\frac{1}{2}$, $\frac{3}{4}$, $-\frac{1}{4}$. The integers may also be regarded as rational numbers since an integer <i>n</i> may be considered to be $n/1$.	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Graphical representation	The real numbers may be represented by points on a line either side of zero. This is sometimes called the Real line.	
	The number 0 (zero) has the unique properties: $a + 0 = a, a \times 0 = 0$	
	The number 1 (unity) has the unique property: $a \times 1 = a$	

Infinity	The real numbers form a continuum from $-\infty$ to $+\infty$. The symbol ∞ denotes "infinity". It is important to understand that <i>infinity</i> cannot be regarded as a number since it does not obey the rules of algebra. In the algebra of real numbers, the statement $x = \infty$ has no meaning. We say that $x \rightarrow \infty$ which means that x approaches a very large value which is not measurable. We can also say:
	As $x \to \infty$, $1/x \to 0$ i.e. as x becomes infinitely large, $1/x$ approaches zero, however, the expression $1 \div \infty$ has no meaning.
	As $x \rightarrow 0$, $1/x \rightarrow \infty$, i.e. as x approaches zero, $1/x$ becomes infinitely large, however, the expression $1 \div 0$ has no meaning since division by zero is undefined.
	The above two statements are examples of <i>limits</i> which will be discussed later in the course.
Equations	An equation consists of two expressions separated by the equality sign $=$ The solution of algebraic equations is very simple if you remember that all you are doing is arithmetic with real numbers. Therefore, the only operations you need to perform as the operations of <i>addition, subtraction, multiplication,</i> and <i>division</i> . Sometimes other operations such as taking square roots may be required.
	The statement [expression 1] = [expression 2] simply means that the 2 expressions have exactly the same numerical value, i.e. they are the same real number. Therefore any arithmetic operation performed on one side must be performed on the other side in order that the equality remain true.
	Example Find the value of x which satisfies the equation: 2x + 3 = 11
	This equation simply states that the number $(2x + 3)$ is equal to the real number 11. If we <i>subtract</i> 3 from each number we obtain
	2x = 8
	If we now <i>divide</i> each number by 2 we obtain $x = 4$, which is the only solution or <i>root</i> of this equation.
	In solving equations you should avoid such vague rules as "take 3 to the other side and change its sign". There is no such operation in algebra. What is being performed is <i>subtraction</i> . If this point is appreciated, the student will have no difficulty in manipulating the most complicated expressions.

Identities An equation in a variable x is satisfied by specific values of x only. For example, the above equation is satisfied by one single value of x, namely x = 4. The equation $x^2 = 9$ is satisfied by 2 real numbers only, x = 3 and x = -3. The equation sin x = 1 is satisfied by an infinite set of numbers; $x = \pi/2 \pm 2n\pi$, where *n* is an integer. An identity is satisfied by all real numbers. To distinguish an identity from an equation we use the symbol \equiv which means *identically equal to*. Examples $(x+1)^2 \equiv x^2 + 2x + 1$ This statement is true for every real value of x (also for every complex value). This may be checked by substituting any value you please in both sides and it will always be equal. $\sin^2 x + \cos^2 x = 1$ is an identity as it is true for all values of x. Again, this may be verified by substituting any number for x. Therefore it is more informative to write it as: $\sin^2 x + \cos^2 x \equiv 1$ SAQ1-1-1 If x is a **real number**, for what values of x are the following statements true? 3(2x+5)+2 = 6x+17a. b. $\frac{x-1}{2} + \frac{4x+1}{5} = x$ c. $x^2 + 4 = 0$

Application of	The distributive law is used to remove brackets.			
distributive law	eg (<i>a</i> +	b)(c+d)		
	= ((a+b)c + (a+b)d	applying the distributive law and treating $(a + b)$ as a single number.	
	= ac + bc + ad + bd applying the distributive law to each bracket.			
	As a in th	As a general rule of thumb, multiply everything in one bracket by everything in the other bracket.		
	EXAMPI	EXAMPLE		
	Simplify $(2x - 3y)(4x + 7y) - xy + x^2 = 3y^2$			
		(2x - 3y)(4x + 7)	$(y) - xy + x^2 = 3y^2$	
		$=8x^2+14xy-12$	$2xy - 21y^2 - xy + x^2 - 3y^2$	
		$=9x^2 + xy - 24y^2$		
Factorisation	To factorise expressions we apply the distributive law in reverse. For example $2a^2b + 4a$ By inspection we see that both terms have a common factor of $2a$. $\therefore 2a^2b + 4a = 2a(ab + 2)$ More complicated expressions may be factorised by grouping together terms which have common factors, for example 15ac - 6ad + 20bc - 8bd = 3a(5c - 2d) + 4b(5c - 2d) = (5c - 2d)(3a + 4b) The same result could have been obtained by grouping the pairs differently, eg 15ac - 6ad + 20bc - 8bd		apply the distributive law in reverse. For example	
			ions may be factorised by grouping together terms , for example	
	= 5c(3a+4b) - 2d(3a+4b)		a + 4b)	
	= (3a+4b)(5c-2d)		
	I			

SAQ1-1-2	Applying the distributive law, simplify the following
	a. $3(x+2y) - 5(2x-y) + 12x - 2y$
	b. $(a+2b)(c-3d) - ad + b(4c-2d)$
	c. $(2x+3)(5x-1) - x^2 - 3x + 1$
SAQ1-1-3	Factorise the following expressions
	a. $3ab + 9bc$
	b. $abc - a^2b + b^2c - ab^2$
	c. $\frac{3 ab}{4} - \frac{15 a^2}{8}$

SAQ1-1-4 Solve the following equations for x .	
	a. $(2x+3) - 4(x-5) = 6$
	b. $\frac{x}{3} + \frac{2x}{5} = \frac{22}{3}$
	c. $3x + \frac{1}{4}x - \frac{3}{4}x + 5x = \frac{1}{2}$

Chapter 2 Indices and Logarithms

Indices	If <i>a</i> is a real number and <i>n</i> is a positive integer then we write
	$\underbrace{a \times a \times a \times \cdots \times a \times a}_{n \text{ times}} = a^{n}$
	This is said as "a raised to the power of n". n is called the <i>index, power</i> , or <i>exponent</i> . a is called the <i>base</i> .
Rules of indices	If <i>n</i> and <i>m</i> are both positive integers we obtain the following rules.
Multiplication	$a^m \times a^n = a \times a \times \cdots \times a$ x $a \times a \times \cdots \times a$
	<i>m</i> times <i>n</i> times
	$= \underline{a \times a \times a \times \cdots \times a \times a}_{= -a^{m+n}}$
	m+n times
	Thus when multiplying powers of the same base, we add the indices.
	<i>n</i> times
	It follows that $(a^m)^n = a^m \times x^m \times a^m \times \cdots \times a^m = a^{mn} a^{m+m+\cdots+m}$
	Hence $(a^m)^n = (a^n)^m = a^{mn}$
	<i>m</i> times
Division	If $m > n$ then $a^m \div a^n = \underbrace{a \times a \times a \times \cdots \times a \times a}_{a \times a \times \cdots \times a \times a}$
	<i>n</i> times
	$\underbrace{= a \times a \times \cdots \times a \times a}_{m-n \text{ times}} = a^{m-n}$
	Thus when dividing powers of the same base, we subtract the indices.
Examples	1. $10^2 \times 10^3 = 10 \times 10 \times 10 \times 10 \times 10 = 10^5 = 10^{2+3}$
	2. $10^6 \div 10^4 = \frac{10 \times 10 \times 10 \times 10 \times 10 \times 10}{10 \times 10 \times 10 \times 10} = 10 \times 10 = 10^2$ = 10^{6-4}

Negative	<i>m</i> times
mulees	If $m > n$ then $a^m \div a^n = a \times a \times \cdots \times a$
	$\underbrace{a \times a \times a \times a \cdots \times a}_{\qquad \qquad \qquad$
	<i>n</i> times
	=1
	$a \times a \times \cdots \times a \times a$
	n-m times
	$=\frac{1}{a^{n-m}}$
	Now, $m-n$ is negative and from the above rule for division
	$a^m \div a^n = a^{m-n} = \underline{1}$
	Hence $a^{-(n-m)} = = \frac{1}{a^{n-m}}$
	So for a negative index, to keep the rules consistent, we define
	$a^{-p} = = \frac{1}{a^{p}}$
Example	$10^{-3} = \frac{1}{10^3} = 0.001$
	The rules of multiplication are also consistent eg $10^4 \times 10^{-3} = 10^1 = 10$ i.e. the indices are added.
Zero index	By the rule for multiplication, $a^n \times a^0 = a^{n+0} = a^n$ By the rule for division $a^n \div a^n = a^{n-n} = a^0$
	In both cases this implies that $a^0 = 1$
Rational	Consider the rational power $n = \frac{1}{2}$
indices	$a^{\frac{1}{2}} \times a^{\frac{1}{2}} = a^{\frac{1}{2}+\frac{1}{2}} = a^{1} = a$ This implies that $a^{\frac{1}{2}}$ means \sqrt{a} , since $\sqrt{a} \times \sqrt{a} = a$. Similarly, $= a^{\frac{1}{n}} \times a^{\frac{1}{n}} \times a^{\frac{1}{n}} \times \cdots \times a^{\frac{1}{n}} = a$
	<i>n</i> times
	Hence, $a^{1/n} = \sqrt[n]{a}$ i.e. the n^{th} root of a .

However, if *n* is an even number, $a^{1/n}$ only exists as a real number for $a \ge 0$, since even roots of negative numbers are "imaginary". We shall deal with imaginary numbers in Section 2: Complex numbers. If *m*, *n* are integers, positive or negative, then $a^{m/n} = (a^m)^{1/n} = (a^{1/n})^m$ Hence $a^{m/n} = \sqrt[n]{(a^m)} = (\sqrt[n]{a})^m$ However, if m_n is a fraction in its smallest form, and *n* is even, then $a^{m/n}$ can only be real for $a \ge 0$, since even roots of negative numbers are not real. 1. $8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$ Examples or $8^{2/3} = (\sqrt[3]{8})^2 = 2^2 = 4$ $625^{-3/4} = 1/625^{3/4} = 1/(\sqrt[4]{615})^3 = 1/5^3 = 1/125 = 0.008$ 2. 3. Express in its simplest form with positive indices $\frac{1}{2}(3x-2)^{\frac{3}{4}} - \frac{3}{2}(3x-2)^{-\frac{1}{4}}$ $= \frac{(3x-2)^{3/4}}{2} - \frac{3}{2(3x-2)^{1/4}}$ $= \frac{(3x-2)^{3/4} (3x-2)^{1/4} - 3}{2(3x-2)^{1/4}}$ $= \frac{(3x-2) - 3}{2(3x-2)^{1/4}} = \frac{3x-5}{2(3x-2)^{1/4}}$ 4. Simplify $\sqrt{\frac{b^{-3} (b^2)^{1/2}}{b^{-8}}}$ $\left(\frac{b^{-3}b}{b^{-8}}\right)^{1/2} = \left(\frac{b^{-2}}{b^{-8}}\right)^{1/2} = (b^6)^{1/2} = b^3$

Irrational indices	An irrational number cannot be expressed in the form m/n , therefore a^p where p is irrational cannot be defined as above. We shall leave this definition until after the next sub–section on <i>logarithms</i> .
SAQ1-2-1	Simplify, expressing the answer with positive indices.
	a. $\frac{1}{\sqrt{(z^3 \times z^{-5} \div z^{10})}}$
	b. $(x+2)^{\frac{1}{2}} - 4(x+2)^{-\frac{1}{2}} + 5(x+2)^{-3/2}$
SAQ1-2-2	Evaluate $6561^{-3/8}$, expressing the answer as a rational fraction.
SAQ1-2-3	If $a^{\frac{1}{2}} + a^{-\frac{1}{2}} = (2x+2)^{\frac{1}{2}}$, show that $x = \frac{1}{2}(a+1/a)$.

This page has	
been left	
blank for the	
working of	
SAQs.	

Logarithms	The logarithm of a number to a given base is the power of the base which gives that number. i.e. $y = \log_b x$ if $x = b^y$.	
	<u>Examples</u> : $\log_{10}100 = 2$, since $100 = 10^2$	
	$\log_{10}1000 = 3$, since $1000 = 10^3$	
	$\log_{10} 0.01 = -2$, since $0.01 = 10^{-2}$	
	$\log_2 8 = 3$, since $8 = 2^3$	
	$\log_2 \frac{1}{4} = -2$, since $\frac{1}{4} = 2^{-2}$	
	If b is any base, it follows that	
	$\log_b b = 1$, since $b^1 = b$	
	$\log_b 1 = 0$, since $b^0 = 1$	
	If $x < 1$ then $\log x < 0$	
Standard notation	The most widely used logarithms are logarithms to the base ten. These are called <i>common logarithms</i> . Logarithms to the base e <i>(natural logarithms)</i> are often encountered in engineering. In information theory, logarithms to the base two <i>(binary logarithms)</i> are also used. Bases of logarithms are always positive constants. Bases other than 10, e, 2 are rarely used. The IEC standard notation is as follows: The common logarithm of x ; $log_{10}x$ is written lgx The natural logarithm of x ; $log_{2}x$ is written lnx The binary logarithm of x ; $log_{2}x$ is written lbx The student should be aware that these conventions are not always followed. $log x$ is often used to denote $log_{10}x$ while in some pure mathematics texts, $logx$ is used to denote $log_{0}x$.	
Antilogarithms	logarithms The inverse of a log is sometimes called the antilog. eg $log_{10}100 = 2$ \therefore antilog_{10}2 = 100	
	It is obvious that $\operatorname{antilog}_{10} x \equiv 10^x$	
	Similarly antilog _e $x \equiv e^x$, antilog ₂ $x = 2^x$	

Example	2. Given $\lg 2 = 0.30103$, find $\lg 5$.
	$lg \frac{1}{2} = -lg 2 = -0.30103$ $lg 5 = lg(10 \text{ x } \frac{1}{2}) = lg 10 + lg \frac{1}{2}$ = 1 - 0.30103 = 0.69897
Change of base	$\log_a x = \frac{\log_b x}{\log_b a}$
	$\frac{Proof}{\text{Taking logs to base } b, \text{ log}_b x = N \text{ log}_b a}$
	Hence, N = $\frac{\log_b x}{\log_b a}$
	$\therefore \log_a x = \frac{\log_b x}{\log_b a}$
	This rule may be used to find logs to base 2 using a calculator. eg
Example	$\log_2 42 = \frac{\lg 42}{\lg 2} = \frac{1 \cdot 62325}{0 \cdot 30103} = 5 \cdot 3923$
	Alternatively, $\log_2 42 = \frac{\ln 42}{\ln 2} = \frac{3 \cdot 73767}{0 \cdot 69315} = 5 \cdot 3923$
Change of base for powers	It is often useful to express a power of one base in terms of a different base, usually as a power of e.
	From the above rules, $\ln a^x = x \ln a$ (for $a > 0$)
	Taking antilogs to base e (raising e to the power of both sides)
	$a^x = e^{x \ln a}$
Irrational index	An irrational power may now be defined, i.e. $a^x = e^{x \ln a}$ for irrational x. This definition only holds for $a > 0$, since $\ln a$ does not exist for $a \le 0$.

Examples	1.	Expre	ess 10 ³ as a	powe	r of e.								
		10 ³ =	$= e^{3 \ln(10)} =$	$e^{3 \times 2}$	-3026 =	e ^{6.907}	78						
	2. Express $(6e^{-2})^{1.5}$ as a single exponent of e.												
	$(6e^{-2})^{1.5} = 6^{1.5}e^{-3} = e^{1.5 \ln 6} e^{-3} = e^{2.688}e^{-3} = e^{2.688-3} = e^{-0.312}$												
	3.	Solve	e for <i>x</i>										
		a. $3^{2x-6} = 9$											
		b.	$7^{2-x} = 2^{x-x}$	+ 3									
		C.	$3 \log_2(3x +$	- 1) -	$\log_2(x)$	$(-3)^3$	= 12						
	a.	9 1s a Takir	n exact pov ng logs to b	ver of ase 3;	3, 1.e. $2x - 6$	$3^{2x=0}$ 5 = 2,	$= 3^2$ Hence x	= 4					
	b.	7 and base; (2– <i>x</i>)	l 2 cannot l log 7	be exp =	oressed $(x+3)$	exact	tly in the s	ame ba	ase, so taking logs to any				
		2 log 2 log log 7	$7 - x \log 7$ $7 - 3 \log 2$ $^{2} - \log 2^{3}$	=	$x \log x$ $x(\log x)$	2 + 3 2 + 1c (2×7)	log 2 og 7))						
	$x = \frac{\log 49 - \log 8}{\log 14}$												
	Evaluating using common logs, $x = 0.687$												
	c. This may be rewritten as $3 \log_2 (2x+1) - 3 \log_2 (x-3) = 12$												
		Divic	led by 3;			log ₂ ((2x+1) -	log ₂ (x	(x-3) = 4				
	This may be rewritten as $\log_2\left(\frac{2x+1}{x-3}\right) = 4$												
					Hence	Э,	$\frac{2x+1}{x-3}$	=	2 ⁴				
			2x + 1	=	16 <i>x</i> –	48							
			49	=	14 <i>x</i>			<i>x</i> = 3	1/2				

Example	4. Rearrange the following formula in terms of <i>i</i> .
	$t = \frac{L}{R} \ln\left(\frac{E}{E - iR}\right)$
	<i>Rearranging</i> $\frac{R t}{L} = \ln\left(\frac{E}{E - iR}\right)$
	$\therefore e^{Rt/L} = \frac{E}{E - iR}$
	$\mathbf{E} - i\mathbf{R}$ = $\mathbf{E} \div \mathbf{e}^{\mathbf{R}t/\mathbf{L}}$ = $\mathbf{E} \mathbf{e}^{-\mathbf{R}t/\mathbf{L}}$
	$E(1 - e^{-Rt/L}) = iR$
	$i = \frac{E}{R} (1 - e^{-Rt/L})$
SAQ1-2-4	Prove the rules of logarithms, i.e.
	a. $\log_b(x y) = \log_b x + \log_b y$
	b. $\log_b(x \div y) = \log_b x - \log_b y$
	c. $\log(x^n) = n \log_b x$

SAQ1-2-5	Given lg 5 = 0.69897, lg 7 = 0.84510, using this information only, find (a) lg 2 (b) lg 14 (c) lg 3.5 (d) lg 1.96 (e) lg 8.75, expressing the answers to 4 places of decimals.
SAQ1-2-6	Using the change of base rule for logarithms:
	a. Evaluate $\log_2 50$ to 4 decimal places.
	b. Prove $\log_a b = 1/(\log_b a)$, where <i>a</i> , <i>b</i> are any 2 numbers.

SAQ1-2-7	Solve for x without using log tables or calculator.
	a. $\log_{10} x = \log_{10} 3 + \log_{10} 4 - \log_{10} 6$
	b. 2^{x+1} . $3^{x-1} - 2^x$. $3^{x-2} = 120$
SA01-2-8	The voltage y on a transmission line at a distance r km from the source is given by
ShQ120	$v = V_A e^{-\alpha x}$ where V_A is the transmission voltage and α is the attenuation constant. If $V_A = 10$ volts, $\alpha = 0.04$ find the distance from the source at which
	the voltage is 3.68 volts.

SAQ1-2-9	Rearrange the following formula to obtain an expression for <i>t</i> .
	$v = E(1 - e^{-t/CR})$
SAQ1-2-10	Express 3×10^{-2} in the form e^x .

Chapter 3 Quadratics

Quadratics	A quadratic is a second degree polynomial. It is of the form $ax^2 + bx + c$, where <i>a</i> , <i>b</i> , <i>c</i> , are constants.
Perfect Squares	<u>NOTE</u> $(x + a)(x - a) \equiv x^2 - a^2$ (Difference between 2 squares) $(x + a)^2 \equiv x^2 + 2ax + a^2$ Perfect square $(x - a)^2 \equiv x^2 - 2ax + a^2$ ""
	In the expressions for perfect squares, the coefficient of x is $\pm 2a$ and the constant term is a^2 . These are clearly related.
	It can be seen that if a quadratic is a perfect square, then the constant term is the square of half the coefficient of x . eg
	$(x+3)^2 \equiv x^2 + 6x + 9$ (1/2 × 6) ² = 9
	$(x-5)^2 \equiv x^2 - 10x + 25$ $(\frac{1}{2} \times -10)^2 = 25$
Completing the square	The above is used in completing the square, i.e. expressing a quadratic as the sum of a perfect square plus a constant. This process is often used when finding inverse Laplace transforms of second order expressions, applied to circuit analysis.
Examples	1. Here we require $(\frac{1}{2} \times 6)^2 = 9$ to make a perfect square $x^2 + 6x + 13 = x^2 + 6x + 9 -9 + 13$ $\equiv x^2 + 6x + 9 + 4$ $\equiv (x + 3)^2 + 2^2$
	If the coefficient of x^2 is other than unity, take it out as a factor
	2. $2x^2 + 8x - 3 \equiv 2\{x^2 + 4x - \frac{3}{2}\}$ $\equiv 2\{x^2 + 4x + 4 - 4 - \frac{3}{2}\}$ $\equiv 2\{(x+2)^2 - \frac{11}{2}\}$ $\equiv 2(x+2)^2 - 11$ (multiply back by 2)

3. $3x^{2} - 6x + 10 \equiv 3 \{ x^{2} - 2x + \frac{10}{3} \}$ $\equiv 3 \{ x^{2} - 2x + 1 - 1 + \frac{10}{3} \}$ $\equiv 3 \{ (x - 1)^{2} + \frac{7}{3} \}$ $\equiv 3 (x - 1)^{2} + 7$

SAQ1-3-1

Express the following quadratics in the form $A(x + B)^2 + C$

a. $x^{2} + 14x + 50$ b. $x^{2} - 6x + 14$ c. $3x^{2} + 15x - 4$ d. $2 + 6x - 2x^{2}$ e. $-5x^{2} - 10x - 20$

Complex

If $b^2 - 4ac < 0$ then it has no real square root. In this case, the roots are complex.

	$63x^2 - 103x - 26 \equiv 63(x - \alpha)(x - \beta)$ where α , β are the roots of
	$63x^2 - 103x - 26 = 0$
	$\therefore \alpha, \beta = \frac{103 \pm \sqrt{17161}}{126}$
	$=\frac{13}{7}$, $\frac{-2}{9}$
	$\therefore 63x^2 - 103x - 26 \equiv 63(x - \frac{13}{7})(x + \frac{2}{9})$
	$\equiv (7x-13)(9x+2)$
	In this example the factors are rational but in most practical cases this will not be so.
Irrational	Factorise $x^2 - 4x - 14$
factors	$x^2 - 4x - 14 \equiv (x - \alpha)(x - \beta)$, where α , β are the roots of
	$x^2 - 4x - 14 = 0$ $\therefore \alpha, \beta = \frac{4 \pm \sqrt{72}}{2} = \frac{4 \pm \sqrt{(36 \times 2)}}{2}$
	$=\frac{4\pm 6\sqrt{2}}{2} \qquad = 2\pm 3\sqrt{2}$
	Note that the irrational roots are conjugate surds. $\therefore x^2 - 4x - 14 \equiv (x - 2 - 3\sqrt{2})(x - 2 + 3\sqrt{2})$ $= (x - 6\cdot24)(x + 2\cdot24) \text{ to 2 decimal places.}$
	In most practical problems, a solution is obtained to a specified degree of accuracy.
Example	Factorise $6 \cdot 3x^2 + 1 \cdot 5x - 3 \cdot 2$ $6 \cdot 3x^2 + 1 \cdot 5x - 3 \cdot 2 = 6 \cdot 3(x - \alpha)(x - \beta)$, where α , β are the roots of $6 \cdot 3x^2 + 1 \cdot 5x - 3 \cdot 2 = 0$
	$\therefore \alpha, \beta = \frac{-1 \cdot 5 \pm \sqrt{82 \cdot 89}}{12 \cdot 6} = 0.604, -0.842$
SAQ1-3-2	$6 \cdot 3x^2 + 1 \cdot 5x - 3 \cdot 2 = 6 \cdot 3(x - 0 \cdot 604)(x + 0 \cdot 842)$ to 3 decimal places. Find the factors of $2x^2 + 20x + 26$, expressing the answer in

	(a)	surd	form		(b)	in dec	cimal fo	orm to	3 deci	mal p	olaces.			
SAQ1-3-3	Find decir	the nals.	factor	s of	$3x^2 -$	2.75x	- 1.2	, exp	ressing	the	answer	to 2	2 places	s of

Chapter 4 Algebraic division

Algebraic division Polynomials	A polynomial in x is a function of x of the form $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$							
	Where <i>n</i> is a non-negative integer and a_0 , a_1 , a_3 , are constants, some of which may be zero. If a_n is not zero then <i>n</i> is the degree of the polynomial, i.e. the highest power present. For example $5 + 2x - 3x^2 + 7x^3$ is a polynomial of degree 3 (cubic polynomial)							
	As a special case, a constant a_0 may be regarded as a polynomial of degree zero, since $a_0 = a_0 x^0$. Polynomials have applications to the theory of Error Detection and Correction in digital transmissions.							
Addition and multiplication	The sum, difference, or product of two polynomials is clearly another polynomial. If P_m is a polynomial of degree <i>m</i> and P_n is a polynomial of degree <i>n</i> then $P_m \ge P_n$ if a polynomial of degree $m+n$. If $m>n$ then $P_m \pm P_n$ is a polynomial of degree <i>m</i> .							
Examples	$(x^{3} + x^{2} - 4x + 2)(3x^{2} - 2x + 1) \equiv 3x^{5} + x^{4} - 13x^{3} + 15x^{2} - 8x + 2$							
	$(x^{3} + x^{2} - 4x + 2) + (3x^{2} - 2x + 1) \equiv x^{3} + 4x^{2} - 6x + 3$							
Polynomial division	However, when one polynomial is divided by another, the result is only a polynomial if it divides exactly with no remainder, i.e. if the smaller polynomial is a factor of the larger one.							
	$\frac{2x^3 + 7x^2 + 5x - 2}{2x^2 + 3x - 1} = x + 2 $ (divides exactly)							
	$\frac{4x^3 + x^2 - 4x + 2}{x^2 - 2x + 1} = 4x + 9 + \frac{10x - 7}{x^2 - 2x + 1}$ We obtain a quotient of $4x + 9$ with a remainder of $10x - 7$.							
	These results may be obtained by a process of algebraic long division which consists of continually removing multiples of the divisor until either there is no remainder or the remainder is of lower degree than the divisor. To illustrate this process, let us remind ourselves of how we used to perform numerical long division before we had calculators.							
Example	2359 ÷ 15							
	The number we are dividing by is called the <i>divisor</i> = 15 The number we are dividing is called the <i>dividend</i> = 2359							
	Dividing the dividend by the divisor gives a result called the <i>quotient</i> and a <i>remainder</i> which will be zero if the division is exact.							

	Applying the process of long division:								
	$\begin{array}{cccc} \frac{157}{15)2359} & 15 \ \text{divides into } 23 \ \text{at most once, put 1 in the quotient.} \\ & \frac{15}{85} & \text{Multiply the divisor by 1, giving 15, put this underneath.} \\ & 85 & \text{Subtract, giving 8. Bring down 5. 15 divides into 85 at most 5.} \\ & \frac{75}{109} & \text{Multiply divisor by 5, giving 75.} \\ & \frac{105}{4} & \text{Multiply divisor by 7, giving 105.} \\ & & \text{Subtract, giving 4 which is less than the divisor.} \end{array}$								
	15 will not divide into 4 and so the process is finished. We have a quotient of 157 with a remainder of 4. Hence $2359 \div 15 = 157^{4/15}$								
	This familiar process can be applied in exactly the same way to polynomial division. Taking the above two examples:								
Examples of polynomial division	a. $\frac{2x^3 + 7x^2 + 5x - 2}{2x^2 + 3x - 1}$								
division	$\begin{array}{rcl} x & + & 2\\ 2x^2 + 3x - 1 &) & 2x^3 + 7x^2 + 5x - 2\\ & & \underline{2x^3 + 3x^2 - x}\\ & & 4x^2 + 6x - 2\\ & & \underline{4x^2 + 6x - 2}\\ & & 0 \end{array} \qquad \begin{array}{r} 2x^2 \text{ divides into } 2x^3, x \text{ times. Put } x \text{ in quotient.}\\ & & \text{Multiply divisor by } x \text{ then subtract.}\\ & & 2x^2 \text{ divides into } 4x^2, 2 \text{ times. Put } 2 \text{ in quotient.}\\ & & \text{Multiply divisor by } 2 \text{ then subtract.}\\ & & \text{Remainder is zero, so divides exactly.} \end{array}$								
	The remainder is zero, therefore $\frac{2x^3 + 7x^2 + 5x - 2}{2x^2 + 3x - 1} = x + 2$								
	b. $\frac{4x^3 + x^2 - 4x + 2}{x^2 - 2x + 1}$								
	$\begin{array}{rl} x^2-2x+1) \hline 4x^3+x^2-4x+2 \\ \underline{4x^3-8x^2+4x} \\ 9x^2-8x+2 \\ \underline{9x^2-18x+9} \\ 10x-7 \end{array}$ $\begin{array}{rl} x^2 \text{ divides into } 4x^3, 4x \text{ times. Put } 4x \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times. Put } 9 \text{ in quotient.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 \text{ times.} \\ x^2 \text{ divides into } 9x^2, 9 $								
	We are left with a remainder which is not divisible by $x^2 - 2x + 1$. Hence, quotient = $4x + 9$, remainder = $10x - 7$.								
	i.e $\frac{4x^3 + x^2 - 4x + 2}{x^2 - 2x + 1} = 4x + 9 + \frac{10x - 7}{x^2 - 2x + 1}$								
	•								

If P_m is a polynomial of degree m and P_n is a polynomial of degree n, where $m \ge n$, then $P_m \div P_n$ consists of a quotient of degree m-n with a remainder whose degree is less than n. the remainder may be zero. SAQ1-4-1 Perform the following long divisions: a. $(4x^4 - 4x^3 + 7x^2 - 3x - 4) \div (2x + 1)$ b. $(3x^4 + 2x^3 - 2x^2 - x + 6) \div (3x^2 - x + 2)$ c. $(2x^3 + 5x - 4) \div (x^3 + x^2 - 1)$ d. $\frac{x^3 + 3x^2 + 4x - 2}{(x+1)(x-3)}$ e. $(6x^3 + 11x^2 - x + 11) \div (3x + 7)$ This page has been left blank for the working of SAQs. Chapter 5 Simultaneous Equations

Equations with more than one unknown	In chapter 1 we looked at the solution of equations with one unknown . An equation such as $2x - 3y = 6$ has two unknown quantities, x and y. It is not possible to solve this equation uniquely for x or y. In order to solve it, we need some additional information. Simultaneous equations are a set of equations in more than one unknown, which may be solved to give values for all the unknowns.
	This type of equation arises from problems in electrical networks which have more than one branch. Later, on the course at the Royal School of Signals, we shall solve this type of equation using matrix methods on a computer. Some pocket calculators have the facility for solving simultaneous equations but before you use this it is advisable to have some idea of how they are solved by hand.
Methods of solution	
Method 1 Back- substitution	Consider the equation in line 2 above: 2x - 3y = 6 If we also had the information $x + y = 2$, then we can solve for both unknowns. This is a set of simultaneous equations. We have :
	2x - 3y = 6 (1)x + y = 2 (2)
	From equation \textcircled{O} $x = 2 - y$
	Substituting this into equation $①$: 2(2-y) - 3y = 6
	Solving this for y: 4-2y-3y = 6 $-5y = 2$ $y = -0.4$
	Substituting the value of y back into equation $@$ x = 2 - (-0.4) = 2.4
	The solutions are $x = 2.4$, $y = -0.4$
	We could, of course, have substituted for <i>y</i> first, i.e. $y = 2-x$ and then evaluated <i>x</i> .
	The solutions are $x = 2 \cdot 4$, $y = -0 \cdot 4$ We could, of course, have substituted for y first, i.e. $y = 2 - x$ and then evaluated

Linear independence	To solve equations with two unknowns we require two equations. To solve equations with three unknowns we require three equations. To solve equations with n unknowns we require n equations.				
	Not only must we have <i>n</i> equations, these equations must be linearly independent . This means that any equation cannot simply be a linear combination of one or more of the other equations.				
Example	Consider the equations $2x + 5y = 4 ① \\ 6x + 15y = 12 ②$				
	Equation $②$ is simply equation $①$ multiplied by 3. It contains no new information. Therefore it is not possible to solve for <i>x</i> and <i>y</i> uniquely.				
Example	Consider the equations in 3 unknowns :				
	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
	These equations are not linearly independent. Any one of these equations may be constructed from a linear combination of the other two, for example, equation $(0, 1)$ may be derived as equation $(2, 1) + 2 \times equation (1, 2)$. Therefore it is not possible to solve for <i>x</i> , <i>y</i> , <i>z</i> , uniquely.				
	The coefficients of <i>x</i> , <i>y</i> , <i>z</i> , may be regarded as the vectors $(1, 3, -4)$, $(2, -1, 5)$, and $(4, 5, -3)$. If these are not independent then the solution cannot be found.				
SAQ 1-5-1	By the method of back-substitution, solve the following equations for x and y .				
	2x + 4y = 5 3x - 5y = 2				
SAQ 1-5-2	A network gives rise to the following equations :				
	$ \begin{array}{rcl} 1 \cdot 5 \ I_1 &-& 1 \cdot 2 \ I_2 &=& 1 \cdot 8 \\ 2 \cdot 8 \ I_1 &-& 8 \cdot 4 \ I_2 &=& -5 \cdot 88 \end{array} $				
	With the aid of a calculator, using back-substitution, solve for I_1 and I_2 .				
Method 2	In this method, one of the variables is firstly eliminated by performing a series of				

Elimination	linear operations between the equations. Any equation or a multiple of it may be added to or subtracted from any other equation.
Example	
	Consider the equations that we solved above.
	2x - 3y = 6 (1)x + y = 2 (2)
	Multiply equation ⁽²⁾ by 2 giving equation ⁽³⁾ $(2) \times 2:$ $2x + 2y = 4$ ⁽³⁾ 2x - 3y = 6 ⁽¹⁾
	Subtract equation ① from equation ③
	$ (3-0): \qquad 5y = -2 \\ \therefore y = -0.4 $
	We can now either back-substitute to find x or use elimination again. In this example, back-substitution is the simpler method, however to illustrate the point, now multiply equation $@$ by 3 giving equation $@$.
	$ \textcircled{2} \times 3: \qquad \begin{array}{c} 2x - 3y &= 6 & \textcircled{1} \\ 3x + 3y &= 6 & \textcircled{4} \end{array} $
	Now add equations ① and ④. ①+④: $5x = 12$ $\therefore x = 2.4$
Example	Solve for <i>x</i> and <i>y</i> .

	$3x + 2y = 25 \qquad \textcircled{0}$ $2x - 5y = 4 \qquad \textcircled{0}$
	Multiply equation $①$ by 2 and equation $②$ by 3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Subtract equation ④ from equation ③.
	$ (3-4): \qquad 19y = 38 \\ \therefore y = 2 $
	Back-substituting into equation $①$ 3x + 4 = 25 3x = 21 x = 7
SAQ 1-5-3	Solve by elimination
	5x + 3y = 81 4x - 2y = 34
SAQ 1-5-4	Solve by elimination with the aid of a calculator
	$\begin{array}{rcl} 2.5 \ I_1 \ + \ 1.2 \ I_2 & = & 7.56 \\ 3.2 \ I_1 \ - & 0.7 \ I_2 & = & 6.77 \end{array}$
Equations in	The same variable is eliminated between two pairs of equations

leaving two

three unknowns	equations in two variables. These are then solved as described above. The third variable can then be obtained by back-substitution.					
Example	Solve for x, y, z. 2x + 3y - 5z = 28 $3x - 2y + 6z = -4$ $x + 4y + 3z = 21$	0 2 3				
	Firstly choose which variable you wish to eliminate. This choice results in the simplest arithmetic. Suppose we cho	s will depend upon which ose <i>x</i> .				
	Multiply equation ③ by 2.					
	(3)×2: $2x + 8y + 6z = 42$ Subtract equation (1) $2x + 3y - 5z = 28$ (4)-(1): $5y + 11z = 14$	4 1) 5				
	We now eliminate the same variable between any other p Multiply equation (3) by 3. (3)×3: $3x + 12y + 9z = 63$ Subtract equation (2) $3x - 2y + 6z = -4$ (6)-(2): $14y + 3z = 67$	oair of equations. © ② ⑦				
	We now have the pair of equations in y and z: 5y + 11z = 14 14y + 3z = 67	S 7				
	Multiply equation (5) by 3 and equation (7) by 11 (5)×3: $15y + 33z = 42$ (7)×11: $154y + 33z = 737$ Subtract equation (8) from equation (9) (9)-(8): $139y = 695$ $\therefore y = 5$	8 9				
	Back-substituting in $\$ gives 25 + 11z = 14 $\therefore z = -1$					
	Back-substituting in ③ for both y and z gives x + 20 - 3 = 21 $\therefore x = 4$					
	Solutions are $x = 4$, $y = 5$, $z = -1$.					
SAQ 1-5-5	Solve for x, y, z :					

x + y - z	= 6	1
3x + 2y + 4z	= 1	2
x - y + 2z	= -6	3

SAQ 1-5-6

In a network the currents in three branches are related by the following equations :

$$\begin{array}{rcl} 3I_1 + 2I_2 + 6I_3 &=& 27 \cdot 5 \\ 3I_1 + 4(I_2 - I_3) &=& 2 \cdot 5 \\ 6(I_3 - I_1) + 4I_2 &=& 19 \end{array}$$

Rearrange these equations into a suitable form and solve them to find values for I_1 , I_2 , I_3 .

Higher order To solve four equations in four unknowns we progressively reduce it to three equations To solve four equations in four unknowns as before. This is obviously very laborious, and computer methods were developed many years ago to solve very large sets of simultaneous equations which arise commonly in engineering, initially using analogue computers and subsequently digital computers. It should also be appreciated that in real life problems, the numbers are not all nice round integers.

On your course at the Royal School of Signals, you will learn computer techniques for solving equations of this type.

Chapter 6
Solutions to SAQs

SAQ1-1-1 solution	a. Applying the distributive law to the left hand side, on $3(2x + 5) + 2 = 6x + 15 + 2 = 6x + 17$. This is identically equal to the side of the statement, therefore the statement is true for all values of x. identity.						
	b.	Multiplying both sides by 10					
		5(x-1)+2(4x+1) = 10x 5x-5+8x+2 = 10x (applying distributive law) 13x-3 = 10x (adding like terms) 3x = 3 (subtract 10x and add 3) x = 1 (divide by 3)					
	The statement is true for $x = 1$ only.						
	c.	Subtracting 4 from both sides					
		$x^2 = -4$					
	There real <i>x</i>	is no real number x for which this statement is true, since $x^2 \ge 0$ for all .					
SAQ1-1-2	a	3(x+2y) - 5(2x-y) + 12x - 2y					
solution	:	= 3x + 6y - 10x + 5y + 12x - 2y					
	:	= 5x + 9y					
	b.	(a+2b)(c-3d) - ad + b(4c-2d)					
	:	= ac + 2bc - 3ad - 6bd - ad + 4bc - 2bd					
	:	= ac + 6bc - 4ad - 8bd					
	C.	$(2x+3)(5x-1) - x^2 - 3x + 1$					
	:	$= 10x^2 + 15x - 2x - 3 - x^2 - 3x + 1$					
		$= 9x^2 + 10x - 2$					

SAQ1-1-3 solution	a.	3ab + 9bc = 3b(a + 3c)			
	b.	$abc - a^2b + b^2c - ab^2$			
		$= b(ac-a^2+bc-ab)$			
		= b(a(c-a) + b(c-a))			
		= b(a+b)(c-a)			
	c.	$\frac{3ab}{4} - \frac{15a^2}{8}$			
		$=\frac{3a}{4}\left(b-\frac{5a}{2}\right)$			
		$= \frac{3a}{8}(2b-5a)$			
SAQ1-1-4	a.	2(x+3) - 4(x-5) = 6			
solution		2x + 6 - 4x + 20 = 6			
		$-2x + 26 \qquad = 6$			
		$20 \qquad = 2x$			
		x = 10			
	b.	$\frac{x}{3} + \frac{2x}{5} = \frac{22}{x}$			
	Multiplying both sides by the lowest common denominator, 15				
		5x + 6x = 110			
		11x = 110			
		x = 10			

SAQ1-1-4	$3x + \frac{1}{4}x - \frac{3}{4}x + 5x = \frac{1}{2}$	
solution	$7\frac{1}{2}x = 1\frac{1}{2}$	
	$\frac{15x}{2} = \frac{3}{2}$	
	15x = 3	
	$x = \frac{1}{5}$	
SAQ1-2-1 solution	$\frac{1}{\sqrt{(z^3 \times z^{-5} \div z^{10})}} = \frac{1}{(z^{-12})^{\frac{1}{2}}} = \frac{1}{z^{-6}} = \frac{1}{z^{-6}}$	z ⁶
	$(x+2)^{\frac{1}{2}} - 4(x+2)^{-\frac{1}{2}} + 5(x+2)^{-3/2}$	
	$= \sqrt{x+2} - \frac{4}{\sqrt{x+2}} + \frac{5}{\left(\sqrt{x+2}\right)^3}$	
	$= \frac{\{\sqrt{(x+2)}\}^4 - 4\{\sqrt{(x+2)}\}^2}{\{\sqrt{(x+2)}\}^3} + 5$	
	$= \frac{(x+2)^2 - 4(x+2) + 5}{(\sqrt{x+2})^3} = \frac{x^2 + 1}{(x+2)^{3/2}}$	
SAQ1-2-2 solution	$561^{-3/8} = 1/(\sqrt[8]{6561})^3 = 1/3^3 = 1/27$	
SAQ1-2-3	$a^{1/2} + a^{-1/2} = (2x+2)^{1/2}$	
solution	quaring both sides, $a + a^{-1} + 2 = 2x + 2$	
	$a + a^{-1} = 2x$	
	$\therefore \qquad x \qquad = \frac{1}{2}(a+1/a)$	

SAQ1-2-4 solution	a.	Let	$u = \log_b x$,		$v = \log_{b} y$
solution		Then	$x = b^{\mathrm{u}},$		$y = b^{v}$
			$\therefore xy = b^u$	b^{v}	
			$= b^{u}$	ı+v	
		Hence, log	b(xy) = u	+v	
			= lo	$g_b x +$	- log _b y
	b.	From abov	e, also $x \div y$, = l	$b^{\mathrm{u}} \div b^{\mathrm{v}}$
				= <i>k</i>	u–v
		Hence, log	$b(x \div y)$	= <i>u</i>	u - v
				= 1	$og_b x - log_b y$
	c.	From abov	e, $u = \log_b x$	C	$\therefore x = b^{\mathrm{u}}$
					$\therefore x^n = (b^u)^n$
					$=b^{\mathrm{nu}}$
		Henc	e, $\log_b(x^n)$		= nu
					$= n \log_{b} x$

SAQ1-2-5 solution	a. $\lg 2 = \lg(10 \div 5) = \lg 10 - \lg 5 = 1 - 0.69897 = 0.30103$ b. $\lg 14 = \lg(7 \times 2) = \lg 7 + \lg 2 = 0.84510 + 0.30103 = 1.14613$ c. $\lg 3.5 = \lg(7 \div 2) = \lg 7 - \lg 2 = 0.84510 - 0.30103 = 0.54407$ d. $\lg 1.96 = \lg(14^2 \div 100) = 2\lg 14 - \lg 100 = 2 \times 1.14613 - 2 = 0.29226$ e. $\lg 8.75 = \lg(7 \times 5 \div 4) = \lg7 + \lg5 - 2\lg2 = 0.84510 + 0.69897 - 0.60206$
SAQ1-2-6 solution	a. $\log_2 50 = \frac{\log_{10} 50}{\log_{10} 2} = 5.6439$
	b. $\log_a b = \frac{\log_b b}{\log_b a} = 1/(\log_b a)$
SAQ1-2-7 solution	a. $\log_{10} x = \log_{10} 3 + \log_{10} 4 - \log_{10} 6$ = $\log_{10} (3 \times 4 \div 6) = \log_{10} 2$ $\therefore x = 2$
	b. $2^{x+1} \cdot 3^{x-1} - 2^x \cdot 3^{x-2} = 120$ $2^x \cdot 2 \cdot 3^x \cdot 3^{-1} - 3^x \cdot 3^x \cdot 3^{-2} = 120$ $^{2}/_3 (2 \times 3)^x - ^{1}/_9 (2 \times 3)^x = 120$ $6 \cdot 6^x - 6^x = 1080$ $5 \cdot 6^x = 1080$ $6^x = 216$ $\therefore x = 3$

SAQ1-2-8 solution	$v = V_A e^{-\alpha x}$			
	Substituting in values; $3.68 = 10 e^{-0.04x}$			
	$e^{-0.04x} = 0.368$			
	Taking logs to base e ; $-0.04x = \ln 0.368$			
	$x = (\ln 0.368) \div (-0.04)$			
	x = 25 km			
SAQ1-2-9	$v = E(1 - e^{-t/CR})$			
solution	$\nu/E = 1 - e^{-t/CR}$			
	$e^{-t/CR} = 1 - v/E \qquad = \qquad \frac{E - v}{E}$			
	Inverting; $e^{t/CR} = \frac{E}{E-v}$			
	Taking logs; $t/CR = \ln\left(\frac{E}{E-\nu}\right)$			
	$t = \operatorname{CR} \ln \left(\frac{E}{E - \nu} \right)$			
SAQ1-2-10	$3 \times 10^{-2} = e^{\ln 3} e^{-2 \ln 10}$			
solution	$= e^{\ln 3 - 2 \ln 10}$			
	$= e^{-3 \cdot 5066}$			

SAQ1-3-1 solution	a.	$x^2 + 14x + 50$	$\equiv x^{2} + 14x + 49 - 49 + 50$ $\equiv (x + 7)^{2} + 1$
	b.	$x^2 - 6x + 14$	$\equiv x^2 - 6x + 9 - 9 + 14$ $\equiv (x - 3)^2 + 5$
	c.	$3x^2 + 15x - 4$	$\equiv 3\{x^2 + 5x - \frac{4}{3}\}$ = 2 (x^2 + 5x + \frac{25}{4}) - \frac{25}{4}(x - \frac{4}{3})
			$\equiv 3\{x + 5x + \frac{1}{4} - \frac{1}{4} - \frac{1}{3}\}$ $\equiv 3\{(x + \frac{5}{2})^2 - \frac{91}{12}\}$ $= 2(x + \frac{5}{2})^2 - \frac{91}{12}$
	d.	$2 + 6x - 2x^2$	$= 3(x + 72) - 74$ $\equiv -2\{x^2 - 3x - 1\}$
			$\equiv -2\{x^2 - 3x + \frac{9}{4} - \frac{9}{4} - 1\}$ $\equiv -2\{(x - \frac{3}{2})^2 - \frac{13}{4}\}$
	e.	$-5x^2 - 10x - 20$	$\equiv -2(x - \frac{3}{2})^2 + \frac{13}{2}$ $\equiv -5\{x^2 + 2x + 4\}$
			$\equiv -5\{x^2 + 2x + 4\}$ $\equiv -5\{(x+1)^2 + 3\}$
			$\equiv -5(x+1)^2 - 15$

SAQ1-3-2 solution	$2x^{2} + 20x + 26 \equiv 2(x - \alpha)(x - \beta)$ where α , β are the roots of $2x^{2} + 20x + 26 = 0$						
	$\therefore \alpha, \beta = \frac{-20 \pm \sqrt{(400 - 208)}}{4} = \frac{-20 \pm \sqrt{192}}{4}$						
	$= \frac{-20 \pm \sqrt{(64x3)}}{4} = \frac{-20 \pm 8\sqrt{3}}{4} = -5 \pm 2\sqrt{3}$						
	$\therefore 2x^2 + 20x + 26 \equiv 2(x + 5 - 2\sqrt{3})(x + 5 + 2\sqrt{3})$						
	= 2(x+1.536)(x+8.464)						
SAQ1-3-3 solution	$3x^{2} - 2 \cdot 75x - 1.2 \equiv 3(x - \alpha)(x - \beta)$ where α , β are the roots of $3x^{2} - 2 \cdot 75x - 1 \cdot 2 = 0$						
	$\therefore \alpha, \beta = \frac{2 \cdot 75 \pm \sqrt{(7.5625 + 14 \cdot 4)}}{6} = \frac{2 \cdot 75 \pm 4 \cdot 686}{6}$						
	= 1.25, -0.32						
	$\therefore 3x^2 - 2 \cdot 75x - 1 \cdot 2 \equiv 3(x - 1 \cdot 25)(x + 0 \cdot 32)$ to two decimal places.						

SAQ1-4-1 solution

$$x^{3} + x^{2} - 1 \frac{2}{2x^{3} + 5x - 4}$$

$$\frac{2x^{3} + 2x^{2} - 2}{-2x^{2} + 5x - 2}$$

The Quotient is 2 with a remainder of $-2x^2 + 5x - 2$

$$\therefore (2x^3 + 5x - 4) \div (x^3 + x^2 - 1) \equiv 2 + \frac{-2x^2 + 5x - 2}{x^3 + x^2 - 1}$$
$$\equiv 2 - \frac{2x^2 - 5x + 2}{x^3 + x^2 - 1}$$

d.

c.

$$\begin{array}{r} x^{2}-2x-3 & \frac{x+5}{) x^{3}+3x^{2}+4x-2} \\ & \frac{x^{3}-2x^{2}-3x}{5x^{2}+7x-2} \\ & \frac{5x^{2}-10x-15}{17x+13} \end{array}$$

The Quotient is x + 5 with a remainder of 17x + 13

$$\therefore \frac{x^3 + 3x^2 + 4x - 2}{(x+1)(x-3)} \equiv x+5 + \frac{17x+13}{(x+1)(x-3)}$$

SAQ1-4-1 solution

e.

$$3x + 7 \frac{2x^2 - x + 2}{6x^3 + 11x^2 - x + 11}$$

$$\frac{6x^3 + 14x^2}{-3x^2 - x + 11}$$

$$-\frac{3x^2 - 7}{6x + 11}$$

$$\frac{6x + 14}{-3}$$

The Quotient is $2x^2 - x + 2$ with a remainder of -3.

Hence,
$$(6x^3 + 11x^2 - x + 11) \div (3x + 7) \equiv 2x^2 - x + 2 - \frac{3}{3x + 7}$$

SAQ 1-5-1 solution	2x + 4y = 5							
	From equation ①, $x = \frac{5-4y}{2}$ ③							
	Substituting in equation ²							
	$3\left(\frac{5-4y}{2}\right) - 5y = 2$							
	Multiply both sides by 2							
	3(5-4y)-10y=4							
	15 - 12y - 10y = 4							
	11 = 22y							
	$y = \frac{1}{2} = 0.5$							
	Substitute for y in ③							
	$x = \frac{5 - 4 \times \frac{1}{2}}{2}$							
	$=\frac{3}{2}=1.5$							
	Solutions : $x = 1.5$, $y = 0.5$.							
SAQ 1-5-2	$1.5 I_1 - 1.2 I_2 = 1.8$ ①							
solution	$2 \cdot 8 I_1 - 8 \cdot 4 I_2 = -5 \cdot 88$							
	From equation ① $I_1 = \frac{1 \cdot 2I_1 + 1 \cdot 8}{1 \cdot 5}$ ③							
	Substituting in equation 2 : $2 \cdot 8 \left(\frac{1 \cdot 2I_2 + 1 \cdot 8}{1 \cdot 5} \right) - 8 \cdot 4I_2 = -5 \cdot 88$							
	Multiply by 1.5: $2 \cdot 8(1 \cdot 2I_2 + 1 \cdot 8) - 12 \cdot 6I_2 = -1 \cdot 68$							
	$3 \cdot 36I_2 + 5 \cdot 04 - 12 \cdot 6I_2 = -8 \cdot 82$							
	$9 \cdot 24I = 13 \cdot 86$							
	$I_2 = 1.5$							
	Substitute in ③:							
	$I = \frac{1 \cdot 2 \times 1 \cdot 5 + 1 \cdot 8}{1 \cdot 2 \times 1 \cdot 5 + 1 \cdot 8}$							
	$r_1 = 1.5$							
	$= 2 \cdot 4$							
	Solutions : $I_1 = 2.4$, $I_2 = 1.5$.							

SAQ 1-5-5 solution

	$ \begin{array}{rcl} x + y - z &= 6 & \\ 3x + 2y + 4z &= 1 & \\ x - y + 2z &= -6 & \\ \end{array} $
①+③:	$2x + z = 0 \qquad \textcircled{9}$
③×2 :	2x - 2y + 4z = -123x + 2y + 4z = 1
\$+2: 4×8:	5x + 8z = -11 (6) 16x + 8z = 0 (7)
⊘–©∶	$\begin{array}{rcl} 11x &= 11\\ \therefore x &= 1 \end{array}$
Back-substitu Back-substitu	uting into equation \textcircled{P} : $2 + z = 0$ $\therefore z = -2$ uting into equation \textcircled{O} : $1 + y + 2 = 6$ $\therefore y = 3$
Solutions :	x = 1, y = 3, z = -2.

SAQ 1-5-6 solution	Rearranging	$3I_1 + 2I_2 - 3I_1 + 4(I_2 + 6(I_3 - I_1) + 6(I_1$	+ $6I_3$ - I_3) + $4I_2$	= 27 = 2 = 19	7·5 ·5			
	- - -	$3I_1 + 2I_2 - 3I_1 + 4I_2 - 6I_1 + 4I_2$	+ $6I_3$ - $4I_3$ + $6I_3$	= 27 = 2 = 19	7·5 ·5	1) 2) 3)		
	①-②:	- 2	$2I_2 + 10$	DI_3	= 2	25	4	
	@×2:	$6I_1 + -6I_1 + 4$	$8I_2 - i$ $I_2 + 6I_3$	8 <i>I</i> 3 3	=	5 19	5 3	
	\$+3:	1	$2I_2 - 2$	I_3	= 2	24	6	
	©×5 :	6 - 21	$\frac{1}{1000} \frac{1}{1000} - \frac{1}{1000}$	$0I_3$	=	120 25	7 4	
	⊘+④:		581 ∴ I₂	2	= =	145 2·5		
	Back-substituting in $\textcircled{3}$: $-5 + 10I_3 = 25$ $\therefore I_3 = 3$							
	Back-substituting in $@: 3I_1 + 10 - 12 = 2.5$ $\therefore I_1 = 1.5$							
	Solutions : I_1	= 1.5,	$I_2 = 2$	·5, 1	<i>I</i> ₃ = 1	3.		